Evaluation of the incidences of salinity and pH on the biomass, productivity and lipids accumulation in cultures of chlorella vulgaris in a flat plate photobioreactor

  • Diego Rubio-Fernández M. Sc. Biología Fundación Universidad América
  • Gregorio Alejandro Hernández Ingeniero Químico Fundación Universidad América
Keywords: Chlorella vulgaris, photobioreactor, lipids, ph, productivity, salinity

Abstract

The present research evaluated the incidence of Salinity, pH and productivity in a culture of Chlorella vulgaris in a flat plate photobioreactor, the evaluation of the incidences was made based on three aspects, but, before this a previous selection of the culture conditions was  made  from the  test  of  four  salinity  concentrations and  four  pH  ranks  obtained  from  previous  studies and based on the growth curves, the volumetric productivity and  the  statistical  analysis  we selected  the  two  better conditions of salinity and pH in order to develop cultures on a photobioreactor level where the best growth curve was selected and analyzed looking for a fatty acids profile and define the proper application.

Downloads

Download data is not yet available.

References

[1] C. C. Flores, J. Mario, P. Castro, L. Bernardo, F. Cotera, R. O. Cañizares, C. Contreras-flores, J. M. Peña-castro, L. B. Flores-cotera, and R. O. Cañizares-villanueva, “Redalyc.Avances en el diseño conceptual de fotobiorreactores para el cultivo de microalgas,” Red Rev. Cient. Ámerica Lat., vol. 28, no. 8, p. 8, 2003.

[2] C. Ángel and W. Pimienta, “Evaluación de la incidencia del nitrógeno en el medio de cultivo bold basal para la producción de biomasa de la microalga chlorella vulgaris en un fotobiorreactor, para la obtención de ácidos grasos,” Fundación universidad américa, 2012.

[3] A M. Santos, M. Janssen, P. P. Lamers, W. a C. Evers, and R. H. Wijffels, “Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions.,” Bioresour. Technol., vol. 104, pp. 593–9, Jan. 2012.

[4] N. York, “Effects of pH on growth, photosynthesis, respiration, and copper tolerance of three Scenedesmus strains,” vol. 37, pp. 153–160, 1997.

[5] S. Hiremath and P. Mathad, “Impact of Salinity on the Physiological and Biochemical Traits of Chlorella,” vol. 1, no. 2, pp. 51–59, 2010.

[6] A. Ruiz, “Puesta en marcha de un cultivo de microalgas para la eliminación de nutrientes de un agua residual urbana previamente tratada anaeróbicamente.,” Tesis de Maestría Univ. Politécnica Val., p. 102, 2011.

[7] K. C. Solano and J. O. A. Elkin, “Determinación de la incidencia de la relación carbono: nitrógeno en la producción de biomasa y ácidos grasos en la microalga Chlorella vulgaris a escala de laboratorio.,” Fundación Universidad América, 2013.

[8] J. R. Benavente-Valdés, J. C. Montañez, C. N. Aguilar, A. Méndez-Zavala, and B. Valdivia, “Tecnología de cultivo de microalgas en fotobiorreactores,” Rev. Científica la Univ. Autónoma Coahuila, vol. 4, no. 7, p. 12, 2012.

[9] D. Rubio, C. Alcalá, and G. Ingrid, “Evaluación de la incidencia de la temperatura en la producción de lípidos obtenidos a partir de biomasa microalgal a escala laboratorio,” Rev. Investig. Univ. América, vol. 6, no. 2, p. 13, 2013.

[10] O. Bastidas, “Conteo Celular con Hematocitómetro,” Tech. Note - Neubauer Chamb. Cell Countign, vol. 1, no. 1, pp. 1–6, Apr. 2011.

[11] D. C. Montgomery, Diseño y analisis de experimentos, 2nd ed. México, 2005.

[12] C. Wang, H. Li, Q. Wang, and P. Wei, “Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry.,” Sheng Wu Gong Cheng Xue Bao, vol. 26, no. 8, pp. 1074–9, Aug. 2010.

[13] J. Sierra and S. Ruiz, “Evaluacion de un fotobiorreactor a escala banco para el cultivo de microalgas y la generación de biomasa.,” Fundación Universidad de América, 2012.

[14] D. Rubio, F. María, C. Ángel, and W. Pimienta, “Incidencia del nitrógeno en la producción de biomasa y ácidos grasos de la microalga Chlorella vulgaris en un fotobiorreactor de panel plano a escala laboratorio,” Rev. Investig. Univ. América, vol. 6, no. 1, pp. 7–18, 2013.

[15] L. E. Bermero Castillo and J. A. Vargas Machuca, “Estudio del cosechado de cultivos de microalgas en agua residual mediante técnicas de centrifugado,” Universidad Técnica Particular de Loja, 2011.

[16] J. U. Grobbelaar, “Mass Production of Microalgae at Optimal Photosynthetic Rates.”

[17] M. R. Tredici, N. Bassi, M. Prussi, N. Biondi, L. Rodolfi, G. Chini Zittelli, and G. Sampietro, “Energy balance of algal biomass production in a 1-ha ‘Green Wall Panel’ plant: How to produce algal biomass in a closed reactor achieving a high Net Energy Ratio,” Appl. Energy, vol. 154, pp. 1103–1111, 2015.

[18] M. Takagi and T. Yoshida, “Effect of Salt Concentration on Intracellular Accumulation of Lipids and Triacylglyceride in Marine Microalgae Dunaliella Cells,” vol. 101, no. 3, pp. 223–226, 2006.

[19] L. Brennan and P. Owende, “Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products,” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 557–577, Feb. 2010.

[20] L. M. Serrano Bermúdez, “Estudio de cuatro cepas nativas de microalgas para evaluar su potencial uso en la producción de biodiesel,” Universidad Nacional de Colombia, 2012.

[21] L. Gouveia and A. C. Oliveira, “Microalgae as a raw material for biofuels production.,” J. Ind. Microbiol. Biotechnol., vol. 36, no. 2, pp. 269–74, Feb. 2009.

[22] M. L. Gerardo, S. Van Den Hende, H. Vervaeren, T. Coward, and S. C. Skill, “Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants,” Algal Res., vol. 11, pp. 248–262, 2015.

[23] S. K. Wang, Y. R. Hu, F. Wang, A. R. Stiles, and C. Z. Liu, “Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors,” Bioresour. Technol., vol. 156, pp. 117–122, 2014.

[24] X. Zhou, L. Xia, H. Ge, D. Zhang, and C. Hu, “Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions,” Bioresour. Technol., vol. 138, pp. 131–135, 2013.
Published
2016-04-04
Section
Research and Innovation Articles