Minimal distance vector. A new approach to avoid tip-over on mobile manipulators

  • Tito Luis González-Fernández Ing. Electrónico Universidad Nacional Experimental del Táchira
  • Antonio José Bravo-Valero Ph. D. Ingeniería Universidad Nacional Experimental del Táchira
Keywords: Gravity center, robot stability, tipover, turnover prevention


Many future applications of robotics systems will  require  that  manipulators  perform  operations while  being  carried  by  moving  vehicles.  However,  different from  a  manipulator  fixed  on  the  floor,  such  a  vehicle-mounted mobile manipulator might be unstable or even tip  over,  this condition  may  be  because  the  center  of mass  is  over  the  mobile  platform  by  the manipulator’s weight.  This  paper  presents  a  new  technique  to  avoid tip-over  condition  using  the  concept  of  minimal  distance  between  the  manipulator  rotational  center  and  the projection  mass  center  arc  in  the  soil  with  the  object of modificate the gravity center of the et changing the manipulator rotational position on mobile platform, the final objective is to compensate the rotational moment at low velocity using counter-balance concept.


Download data is not yet available.


[1] Y. Liu, G. Liu, “Modeling of tracked mobile manipulators with consideration of track-terrain and vehicle-manipulator interactions”, Robotics and Autonomous Systems, vol. 57, no. 11, pp. 1065-1074, Nov 2009.

[2] Q. Huang, S. Sugano, I. Kato, “Stability control for a mobile manipulator using a potential method”, Intelligent Robots and Systems, vol. 2, no. 1, pp. 839-846, Apr. 1994.

[3] D. A. Rey, E. G. Papadoupoulos, “A new measure of tipover stability margin for Mobile manipulators”, Robotics and Automation, vol. 4, no. 1, pp. 3111-3116, May. 1996.

[4] A. Torige, T. Ihara, “Control of manipulator with gravity center position control on Mobile vehicle”, Advanced Robotics, vol. 1, no. 1, pp. 367-372, Jun. 1997.

[5] D. A. Rey, E. G. Papadoupoulos, “Online automatic tipover prevention for mobile manipulators”, Intelligent Robots and Systems, vol. 3, no. 1, pp. 1273-1278, Dec. 1997.

[6] A. Díaz-Calderon, A. Kelly, “On the dynamic stability of mobile manipulators”, PhD Thesis, the Robotics Institute, Carnegie Mellon University. Pittsburgh, PA, USA, 2000.

[7] S. Nakamura, M. Faragalli, N. Mizukami, et al., “Wheeled robot with movable center of mass for traversing over rough terrain”, Intelligent Robots and Systems, vol. 2, no. 1, pp. 1228-1233, Jan. 2007.

[8] L. Yugang, L. Guangjun, “Kinematics and interaction analysis for tracked mobile manipulators”, Intelligent Robots and Systems, vol. 1, no. 1, pp. 267-272, Jan. 2007.

[9] Z. Mingchao, L. Yuanchung, “Decentralized adaptive fuzzy control for reconfigurable manipulators”, Robotics, Automation and Mechatronics, vol. 1, no. 1, pp. 404-409, Feb. 2008.

[10] J. Morales, J. Martínez, A. Mandow, et al, “Center of gravity estimation and control for a field mobile robot with a Heavy Manipulator”, Mechatronics, vol. 1, no. 1, pp. 1-6, Mar. 2009.

[11] P. R. Roan, A. Burmeister, A. Rahimi, et al, “Real-world validation of three tipover algorithms for mobile robots ”, Robotics and Automation, vol. 5, no. 1, pp. 4431-4436, Aug. 2010.

[12] T. González, A. Bravo, “Controlador Difuso para el Cambio del Centro de Gravedad en Manipuladores Móviles”, IEEE América Latina, vol. 12, no. 6, pp. 991-996, Sept. 2014.
Research and Innovation Articles