Page Header
DOI: https://doi.org/10.15332/iteckne.v12i2.1237

Simulation of plasma confinement in an electron cyclotron resonance zero-B trap

Simulación de un plasma calentado mediante resonancia ciclotrónica electrónica confinado en una trampa magnética cero-B

Valeriy Dondokovich Dugar-Zhabon, Mao Tsetung Murillo-Acevedo, Anatoly Umnov

Abstract - 396 | PDF (Español (España)) - 126


Abstract(es_ES)

Actualmente el estudio del comportamiento de plasmas en campos magnetostáticos asimétricos de configuración compleja solo es posible a través de simulación computacional. La eficiencia de confinamiento del plasma en una trampa cero-B, el cual es comprimido longitudinalmente por un espejo magnético y transversalmente por el campo de un hexapolo magnético, es determinada a través del método de partícula en celda electrostático. En el modelo simulado el plasma es calentado por microondas de 14 GH cuya potencia es transmitida a los electrones mediante resonancia ciclotrónica. La distribución espacial de la componete iónica y electrónica es mostrada. Se encuentra que la población electrónica puede ser dividida en tres grupos, fríos, calientes y super calientes. Los datos obtenidos para la distribución de la densidad tanto radial como longitudinal son comparados con las mismas distribuciones encontradas para la trampa mínimo-B. Como resultado se encuentra que la trampa cero-B presenta algunas ventajas frente a la trampa mínimo-B.

Keywords(es_ES)

Trampa magnética; resonancia ciclotrónica electrónica; simulación mediante el método partícula en celda.

Abstract(en_US)

Currently the study of the nonlinear plasma evolution in magnetostatic fields of complex asymmetrical configurations is possible only through computer simulations. The confinement efficiency of plasma by a magnetic zero-B trap which is comprised of longitudinal mirror and transversal hexapole cusp fields is determined through a particle-in-cell method in the electrostatic approximation. In the simulation model the plasma heating by 14 GHz microwave power is realized at electron cyclotron resonance conditions. The space localizations of electron and ion components are visualized. It is found that the plasma electron population can be subdivides into cold, hot and superhot groups. The obtained data for the ion density distribution along radial and longitudinal trap directions are compared with the same distributions calculated for the case of minimum-B trap. It is found that the zero-B trap has some advantage over the minimum-B trap in reference to the Lawson criterion.

Keywords(en_US)

magnetic trap; electron cyclotron resonance; particle-in-cell simulation.

References


R. Geller, “Electron Cyclotron Resonance Ion Sources and ECR Plasmas” Inst. Phys. Publishing, Bristol-Philadelphia, 1994.

V. D. Dougar-Jabon, A.M. Umnov and V.B Kutner, “Calculating method for confinement time and charge distribution of ions in electron cyclotron resonance sources”, Rev Sci Instrum, vol. 67, p. 1152, 1996.

V. D. Dougar-Jabon, A.J. Chacon Velasco, A.M. Umnov and V.I. Kariaka, “Confinement of Ions in Sources Based on Electron Cyclotron Resonance Phenomenon” Phys Scripta, vol. 60, p. 250, 1999.

V. D. Dougar-Jabon, A. M. Umnov, and D. Suescun Diaz, “Three dimensional simulation of an ECR plasma in a minimum-B trap” Rev Sci Instrum, vol. 73, p. 629, 2002.

V. D. Dougar-Jabon, A. M. Umnov, and D. Suescun Diaz, “Properties of Plasma in an ECR Minimum-B Trap via Numerical Modeling” Physica Scripta, vol. 70, no. 1, p. 38, 2004.

K. S. Golovanivsky, V. D. Dougar-Jabon and D. V. Reznikov, Phys Rev E, vol. 52, p. 2969, 1995.

V. Dougar-Jabon and E. Orozco, “Cyclotron spatial autoresonance acceleration model”, Phys Rev ST Accel Beams, 12, 041301, 2009.

V. Dougar-Jabon and E. Orozco, “Three-Dimensional Particle-In-Cell Simulation of Spatial Autoresonance Electron-Beam Motion”, IEEE Trans Plasma Sci 38, p. 2980, 2010.

H. Ikegami, M. Ikezi, S. Tanaka and K. Takayama, “Shell structure of a hot-electron plasma”, Phys Rev Lett. vol. 19, p. 778, 1967.

M. Porcolab, L. Friedland and I. B. Bertnstein, “Electron cyclotron resonance heating of plasmas in tandem mirror traps”, Nucl Fusion vol. 21, p. 1643, 1981.

V. D. Dugar-Zhabon, K. S. Golovanivsky and S. A. Safonov, “An ECR source of multicharged ions HELIOS-12”, Nucl Instrum Meth Phys Res, vol. 219, p. 263, 1984.

V. D. Dougar-Jabon and M. T. Murillo, “Formation of a hot electron ring in an ECR mirror trap through a particle-in-cell simulation study”, IEEE Trans Plasma Sci, vol. 38, p. 3449, 2010.

V. D. Dougar-Jabon, F. A. Vivas Mejía and A. M. Umnov, “Plasma confinement in a electron cyclotron double cusp trap”, Phys Scripta vol. 62, p.183, 2000.

F. Chen, “Introduction to Plasma Physics”, p.190, Plenum Press, New York and London, 1974.

R. W. Hockney and J. W. Easwood, Computer Simulation Using Particles, McGraw-Hill, New York, 1981.

C. K. Birdsall, and A. B. Langdon, Plasma Physics via Computer Simulation, A. Higler Series on Plasma Physics, 1995.

G. Lapenta, F. Inoya, and J. U. Brackbill, “Particle in cell simulation of glow discharges in complex geometries”, IEEE Trans. Plasma Sci. vol. 23, p. 769, 1995.

E. N. Nikolaev, R. M. Heeren, A. M. Popov, A. V. Pozdneev and K. S. Chingin “Realistic modeling of ion cloud motion in a Fourier transform ion cyclotron resonance cell by use of a particle-in-cell approach”, Rapid Communications in Mass Spectrometry vol. 21, Issue 22, pp. 3527-3546, november, 2007.


Abstract - 396 | PDF (Español (España)) - 126

Refbacks

  • There are currently no refbacks.
ISSN: 1692-1798 (impreso)
ISSN: 2393-3483 (en línea)



Imagen