Exoskeleton for ankle joint flexion/extension rehabilitation
DOI:
https://doi.org/10.15332/iteckne.v19i2.2773Keywords:
Rehabilitation robotics, Wearable robotics, Plantarflexion, Dorsiflexion, Model, Euler-Lagrange, Control, ArduinoAbstract
This work presents the modelling, design, construction, and control of an exoskeleton for ankle joint flexion/extension rehabilitation. The dynamic model of the ankle flexion/extension is obtained through Euler-Lagrange formulation and is built in Simulink of MATLAB using the non-linear differential equation derived from the dynamic analysis. An angular displacement feedback PID controller, representing the human neuromusculoskeletal control, is implemented in the dynamic model to estimate the joint torque required during ankle movements. Simulations are carried out in the model for the ankle flexion/extension range of motion (ROM), and the results are used to select the most suitable actuators for the exoskeleton. The ankle rehabilitation exoskeleton is designed in SolidWorks CAD software, built through 3D printing in polylactic acid (PLA), powered by two on-board servomotors that deliver together a maximum continuous torque of 22 [kg cm], and controlled by an Arduino board that establishes Bluetooth communication with a mobile app developed in MIT App Inventor for programming the parameters of the rehabilitation therapies. The result of this work is a lightweight ankle exoskeleton, with a total mass of 0.85 [kg] including actuators (servomotors) and electronics (microcontroller and batteries), which can be used in telerehabilitation practices guaranteeing angular displacement tracking errors under 10%.
Downloads
References
[2] C. A. Oatis, Kinesiology: the mechanics and pathomechanics of human movement, 2nd Ed, USA, Lippincott Williams & Wilkin, 2009.
[3] D. F. Rincón-Cardozo, J. A. Camacho Casas, P. A. Rincón-Cardozo, and N. Sauza-Rodríguez, “Approach of ankle sprain for the general physician,” Revista de la Universidad Industrial de Santander, 47 (1), pp. 85-92, 2015.
[4] K. Moore, A. Dalley, and A. Agur, Anatomía con orientación clínica, 5th Ed, México, Wolters Kluwer, 2007.
[5] D. P. Ferris, J. M. Czerniecki, and B. Hannaford, “An ankle-foot orthosis powered by artificial pneumatic muscles,” Journal of Applied Biomechanics, 21 (2), pp. 189-197, 2006. DOI: https://doi.org/10.1123/jab.21.2.189
[6] K. A. Witte, J. Zhang, R. W. Jackson, and S. H. Collins, “Design of two lightweight, high-bandwidth torque-controlled ankle exoskeletons,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015. pp. 1123-1128. DOI: https://doi.org/10.1109/ICRA.2015.7139347
[7] H. Yu, M. Cruz, G. Chen, S. Huang, C. Zhu, E. Chew, Y. S. Ng, and N. V. Thakor, “Mechanical design of a portable knee-ankle for robot,” in 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013. pp. 2183-2188. DOI: https://doi.org/10.1109/ICRA.2013.6630870
[8] K. A. Shorter, G. F. Kogler, E. Loth, W. K. Durfee, and E. T. Hsiao-Wecksler, “A portable powered ankle-foot orthosis for rehabilitation,” Journal of Rehabilitation Research & Development, 48 (4), pp. 459-472, 2011. DOI: https://doi.org/10.1682/jrrd.2010.04.0054
[9] Y. Bougrinat, S. Achiche, and M. Raison, “Design and development of a lightweight ankle exoskeleton for human walking augmentation,” Mechatronics, 64, 2019. DOI: https://doi.org/10.1016/j.mechatronics.2019.102297
[10] X. Wang, S. Guo, B. Qu, M. Song, and H. Qu, “Design of a passive gait-based ankle-foot exoskeleton with self-adaptive capability,” Chinese Journal of Mechanical Engineering, 33 (49), 2020. DOI: https://doi.org/10.1186/s10033-020-00465-z
[11] J. Leclair, S. Pardoel, A. Helal, and M. Doumit, “Development of an unpowered ankle exoskeleton for walking assist,” Disability and Rehabilitation: Assistive Technology, 2018. DOI: https://doi.org/10.1080/17483107.2018.1494218
[12] J. Liu, C. Xiong, and C. Fu, “An ankle exoskeleton using lightweight motor to create high power assistance for push-off,” Journal of Mechanisms and Robotics, 2019. DOI: https://doi.org/10.1115/1.4043456
[13] D. A. Winter, Biomechanics and motor control of human movement, 4th Ed, New Jersey, John Wiley & Sons, Inc., 2009.
[14] Y. Li, C. Xu, and X. Guan, “Modeling and simulation study of electromechanically system of the human extremity exoskeleton,” Journal of Vibroengineering, 18 (1), pp. 551-661, 2020.
[15] C. Borrás, J. L. Sarmiento, and J. F. Ortiz, “Dynamic model and control design for a nonlinear hydraulic actuator,” in ASME 2018 International Mechanical Engineering Congress and Exposition, 2018. DOI: https://doi.org/10.1115/IMECE2018-88320
[16] R. A. Chaurand, L. R. Prado, and E. L. González, Dimensiones antropométricas de la población latinoamericana, México, Universidad de Guadalajara, 2007.
[17] Z. Taha, A. Abdul, M. Y. Wong, M. A. Hashem, I. M. Khairuddin, and M. A. Mohd, “Modelling and control of an upper extremity exoskeleton for rehabilitation,” IOP Conf. Series: Materials, Science and Engineering, 114, 2016. DOI: https://doi.org/10.1088/1757-899X/114/1/012134
[18] J. L. Sarmiento-Ramos, A. P. Rojas-Ariza, and Y. Z. Rueda-Parra, “Dynamic model of flexion/extension and abduction/adduction of the shoulder joint complex,” in 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), 2021, pp.1-4. DOI: https://doi.org/10.1109/CI-IBBI54220.2021.9626105
[19] R. A. Díaz-Suárez, L. T. Moreno-Moreno, M. A. Sanjuan-Vargas, C. A. Prada-García, and L. D. Torres, “Development of an exoskeleton for the rehabilitation of the flexo-extensor movement of the elbow”, ITECKNE, 18 (1), pp. 46-51, 2021. DOI: https://doi.org/10.15332/iteckne.v18i1.2539
[20] C. Borrás, J. L. Sarmiento, and R. D. Guiza, “Modelling, system identification and position control based on LQR formulation for an electro-hydraulic servo system,” in ASME 2019 International Mechanical Engineering Congress and Exposition, 2019. DOI: https://doi.org/10.1115/IMECE2019-11505
Downloads
Published
How to Cite
Issue
Section
License
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.