Automatic recognition of silhouttes from images acquired in uncontrolled lighting conditions

Authors

  • John Jairo Sanabria Sarmiento Universidad Industrial de Santander (UIS)
  • John Faber Archila Díaz Universidad Industrial de Santander (UIS)

DOI:

https://doi.org/10.15332/iteckne.v9i1.2751

Keywords:

Image denoising, Image enhancement, Image processing, Non-controlled illumination, Silhouettes

Abstract

The image acquisition process is not always realized in a controled environment, therefore it is affected by diverses variables and circumstances, being a necessity the involvement of protocols and measures to reduce the greater impacts. In the case of this investigation the objective is to obtain the silhouette of a person or group automatically whatever are the lighting conditions. A description of an experimental comparison of techniques designed to reduce the impact of lighting conditions during image acquisition to facilitate further analysis of the information contained therein.

Downloads

Download data is not yet available.

Author Biographies

John Jairo Sanabria Sarmiento, Universidad Industrial de Santander (UIS)

MSc.(c) en Ingeniería de Sistemas e Informática, Universidad Industrial de Santander. Miembro Grupo GIROD, Universidad Industrial de Santander UIS, Bucaramanga, Colombia

John Faber Archila Díaz, Universidad Industrial de Santander (UIS)

MSc. Engenharia Mecânica, Universidade Federal do Rio de Janeiro. Docente Tiempo Completo, Director Grupo GIROD, Universidad Industrial de Santander UIS, Bucaramanga, Colombia

References

[1] Bouhamidi A An iterative method for bayesian gaussmarkov image restoration. Applied Mathematical Modelling 33 (2009) 361-372.

[2] Makaremi Iman Ahmadi Majid Blur invariants: a novel representation in the wavelet domain. Pattern recognition 43 (2010) 3950-3957.

[3] Sun Shao-jie et al Blind image deconvolution for single motion blurred image. The journal of China universities of Posts and Telecommunications. June 2010 17(3) 104-109

[4] Candes Emmanuel Compressed sensing makes every pixel counts. Whats happening in the mathematical sciences. (2011)

[5] E Ceseracciu et al, “Markless analysis of frontal crawl swimming,”

[6] Caglioti Vincenzo Giusti alessandro. Recovering ball motion from a single motion-blurred image. Computer vision and image understanding 113 (2009) 590-597

[7] Storring M et al., “Tracking regions of human skin through illumination changes,” Pattern recognitions letters 24 pp. 1715-1723, (2003)

[8] Shen C et al., ”Moving object tracking under varying illuminations conditions,” Pattern recognition letters 27 pp. 1632-1643, (2006),,

[9] Ranz J et al, “Algoritmos genéticos aplicados a la segmentación de imágenes con iluminación no controlada,” presentado en las jornadas de Automática, Tarragona, 2008 Universidad Complutense de Madrid 1-6

[10] Nayak A S Chaudhuri, “Automatic illumination correction for scene enhacement and object tracking,” Image and vision computing 24 (2006) pp. 949-959

[11] Hampson F JC Pesquet, ”Motion estimation in the presence of illumination variations,” Signal processing: Image communication 16 (2000) 373-381

[12] Rav-acha A Peleg Schmuel. Two motion blurred images are better than one. Pattern recognition letters 26 (2005) 311-317

[13] Dong Y, Desouza GN adaptive learning of multi-subspace for foreground detection under illumination changes. Computer vision and image understanding 115 (2011),,

[14] Tafazzoli Faezeh, Safabakhsh Reza, Model-based human gait recognition using leg arm movements. Engineering applications of artificial intelligence (2010)

[15] González, R. Woods. Digital Image Processing using Matlab. Upper Saddle River: Pearson - Prentice Hall, 2004, pp. 954

[16] Pajares Martínez, Gonzalo et al., Visión Por Computador: Imágenes Digitales Y Aplicaciones. México : Alfaomega : Ra-Ma, 2008

[17] Oliveira Joao et al., Adaptive total variation image deblurring. A majorization -minimization approach. Signal Processing 89 (2009) 1683-1693

[18] Stauffer Chris Grimson WEL Adaptive background mixture models for real time tracking. The artificial Inteligence Laboratory MIT, Conference on Computer Vision and Pattern Recognition (1998)

[19] Moeslund Thomas et al., A survey of advances in vision based human motion capture and analysis Computer Vision and Image Understanding 104 (2006) 90-126

[20] Abril Mauricio, Valencia Mauricio, et al., Sistema de visión artificial para el registro de densidad peatonal en tiempo real Scientia et technica, agosto año/vol XIII No. 035 (2007) Universidad Tecnológica de Pereira pp. 79-83,,

[21] Carfagni Monica et al., Real time machine visión system for monitoring the textile raising process Computers in Industry 56 (2005) 831-842

[22] Lu Ye, Li Ze-Nian Automatic object extraction and reconstruction in active video Pattern Recognition 41 (2008) 1159-1172

[23] Rebelo F, Ferreira C, Correia Da Silva K Sintese de padroes motores de membro superior optimizados para aplicaçoes em design ergonómico VI Congreso Nacional de mecánica aplicada e Computacional 10 pág. Disponible online http://home.fmh.utl. pt/~cferreira/ pdf/aveiro2000.pdf en noviembre 2009

[24] Abi M H et al., “An automated method for analysis of gait data to aid clinical interpretation,” presented at Biomedical Engineering (MECBME), 2011 1st. Middle East Conference pp. 119-121

[25] Lam T et al, ”Gait flow image: a silhouette based gait representation for human identification,” Pattern recognition 44 pp. 973-987, (2011)

[26] Tzevanidis K A Argyros, “Unsupervised learning of background modeling parameters in multicamera Systems,” Computer vision and Image understanding 115 (2011) 105-116

[27] Bae, J M Tomizuka, “Gait phase analysis based on a hidden markov model,” Mechatronics (2011)

[28] Agrawal amit Raskar Ramesh Optimal single image capture for motion deblurring pp. 1-8, Conference on Computer Vision and Pattern Recognition (2009)

[29] Mann Steve comparametric equations with practical applications in quantigraphic image processing. IEEE transactions on image processing 9 (8) (2000) 1389-1406

[30] Cai jian Feng et al., Blind motion deblurring using multiple images. Journal of computacional physics 228 (2009) 5057-5071

[31] Sanin Andres et al. Shadow detection: a survey and comparative evaluation of recent methods. Pattern recognition 45 (2012) 1684-1695

[32] Ginesu Giaime et al A multi factor approach for image quality assessment based on a human visual system model. Signal Processing Image communication 21 (2006) 316-333

[33] Zhang xin. Jing xili. Image denoising in contourlet domain based on a normal inverse gaussian prior. Digital signal processing 20 (2010) 1439-1446

[34] Pankjakshan P kumar V Detail preserving image information restoration guided by SVM based noise mapping. Digital Signal Processing 17 (2007) 561-577Journal of biomechanics 44 (2011) 2236- 2242

Published

2014-11-26

How to Cite

Sanabria Sarmiento, J. J., & Archila Díaz, J. F. (2014). Automatic recognition of silhouttes from images acquired in uncontrolled lighting conditions. ITECKNE, 9(1), 107–114. https://doi.org/10.15332/iteckne.v9i1.2751

Issue

Section

Research and Innovation Articles