Bibliometric analysis from expansion planning of Electric Power Systems
DOI:
https://doi.org/10.15332/iteckne.v18i2.2610Keywords:
Contingency Index, expansion methodology, planning, transmission, generation, electric power systemsAbstract
This article presents a bibliometric analysis on the planning of the expansion of electric power systems, a topic of great importance due to the continuous growth of electricity demand. For this reason, electrical power systems must be designed and built to foresee future expansions through the entry of new generation plants, transmission lines and compensating equipment. For the development of this research, keywords that will help find articles on the same subject in Scopus and Web of Science databases will be taken into account. This information will then be organized according to the countries, authors, number of citations and organizations to make a comparison of the information obtained through VOSviewer to inquire about acceptance criteria. By having the selected articles, the matrix of the State of the Art is made which will provide information on formulation, restriction, proposal and solution to the problem.
Downloads
References
[2] D. Carrión, J. Palacios, M. Espinel, and J. González, “Transmission Expansion Planning Considering Grid Topology Changes and N-1 Contingencies Criteria,” 2021, vol. 2, pp. 266–279. DOI: <a href="https://doi.org/10.1007/978-3-030-72208-1" target= _blank> https://doi.org/10.1007/978-3-030-72208-1 </a>
[3] A. C. L. de Oliveira, I. M. de Mendonça, F. G. Duque, N. dos S. Renato, and I. C. da Silva Junior, “A new proposal of static expansion planning of electric power transmission systems using statistical indicators,” Reliab. Eng. Syst. Saf., vol. 200, no. September 2019, p. 106928, 2020. DOI: <a href="https://doi.org/10.1016/j.ress.2020.106928" target= _blank> https://doi.org/10.1016/j.ress.2020.106928 </a>
[4] H. Mavalizadeh et al., “Multiobjective Robust Power System Expansion Planning Considering Generation Units Retirement,” IEEE Syst. J., vol. 12, no. 3, pp. 2664–2675, 2017. DOI: <a href="https://doi.org/10.1109/JSYST.2017.2672694" target= _blank> https://doi.org/10.1109/JSYST.2017.2672694 </a>
[5] Z. Wu, Y. Liu, W. Gu, Y. Wang, and C. Chen, “Contingency-constrained robust transmission expansion planning under uncertainty,” Int. J. Electr. Power Energy Syst., vol. 101, no. February, pp. 331–338, 2018. DOI: <a href="https://doi.org/10.1016/j.ijepes.2018.03.020" target= _blank> https://doi.org/10.1016/j.ijepes.2018.03.020 </a>
[6] R. C. G. Teive, E. L. Silva, and L. G. S. Fonseca, “A cooperative expert system for transmission expansion planning of electrical power systems,” IEEE Power Eng. Rev., vol. 13, no. 2, pp. 636–642, 1997. DOI: <a href="https://doi.org/10.1109/59.667393" target= _blank> https://doi.org/10.1109/59.667393 </a>
[7] M. Majidi-Qadikolai and R. Baldick, “Stochastic Transmission Capacity Expansion Planning with Special Scenario Selection for Integrating $n-1$ Contingency Analysis,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4901–4912, 2016. DOI: <a href="https://doi.org/10.1109/TPWRS.2016.2523998" target= _blank> https://doi.org/10.1109/TPWRS.2016.2523998 </a>
[8] D. B. Aeggegn, A. O. Salau, and Y. Gebru, “Load flow and contingency analysis for transmission line outage,” Arch. Electr. Eng., vol. 69, no. 3, pp. 581–594, 2020. DOI: <a href="https://doi.org/10.24425/aee.2020.133919" target= _blank> https://doi.org/10.24425/aee.2020.133919 </a>
[9] M. Majidi-qadikolai, S. Member, and R. Baldick, “Integration of N-1 Contingency Analysis With Systematic Transmission Capacity Expansion Planning : ERCOT Case Study,” vol. 31, no. 3, pp. 2234–2245, 2015. DOI: <a href="https://doi.org/10.1109/TPWRS.2015.2443101" target= _blank> https://doi.org/10.1109/TPWRS.2015.2443101 </a>
[10] H. A. S. Abushamah, M. R. Haghifam, and T. G. Bolandi, “A novel approach for distributed generation expansion planning considering its added value compared with centralized generation expansion,” Sustain. Energy, Grids Networks, vol. 25, p. 100417, 2021. DOI: <a href="https://doi.org/10.1016/j.segan.2020.100417" target= _blank> https://doi.org/10.1016/j.segan.2020.100417 </a>
[11] J. Aghaei, N. Amjady, A. Baharvandi, and M. A. Akbari, “Generation and transmission expansion planning: MILP-based probabilistic model,” IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1592–1601, 2014. DOI: <a href="https://doi.org/10.1109/TPWRS.2013.2296352" target= _blank> https://doi.org/10.1109/TPWRS.2013.2296352 </a>
[12] D. Do, U. Oh, Y. Lee, J. Choi, and B. Lee, “A Novel Dynamic Index of Voltage Instability Expectation with Power System Contingency,” J. Electr. Eng. Technol., vol. 14, no. 4, pp. 1463–1472, 2019. DOI: <a href="https://doi.org/10.1007/s42835-019-00158-1" target= _blank> https://doi.org/10.1007/s42835-019-00158-1 </a>
[13] H. Zhang, G. T. Heydt, V. Vittal, and J. Quintero, “An improved network model for transmission expansion planning considering reactive power and network losses,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3471–3479, 2013. DOI: <a href="https://doi.org/10.1109/TPWRS.2013.2250318" target= _blank> https://doi.org/10.1109/TPWRS.2013.2250318 </a>
[14] M. Taherkhani, S. H. Hosseini, M. S. Javadi, and J. P. S. Catalão, “Scenario-based probabilistic multi-stage optimization for transmission expansion planning incorporating wind generation integration,” Electr. Power Syst. Res., vol. 189, no. February, p. 106601, 2020. DOI: <a href="https://doi.org/10.1016/j.epsr.2020.106601" target= _blank> https://doi.org/10.1016/j.epsr.2020.106601 </a>
[15] J. Cervantes and F. Fred Choobineh, “A Quantile-Based Approach for Transmission Expansion Planning,” IEEE Access, vol. 8, pp. 82630–82640, 2020. DOI: <a href="https://doi.org/10.1109/ACCESS.2020.2991127" target= _blank> https://doi.org/10.1109/ACCESS.2020.2991127 </a>
[16] D. Quiroga, E. Sauma, and D. Pozo, “Power system expansion planning under global and local emission mitigation policies,” Appl. Energy, vol. 239, pp. 1250–1264, 2019. DOI: <a href="https://doi.org/10.1016/j.apenergy.2019.02.001" target= _blank> https://doi.org/10.1016/j.apenergy.2019.02.001 </a>
[17] P. Kongmany, S. Premrudeepreechacharn, and K. Charoenpatcharakij, “Transmission system reliability evaluation in the Central-1 and Northern regions of the Lao PDR in corresponding to transmission system development plan,” Asia-Pacific Power Energy Eng. Conf. APPEEC, 2009. DOI: <a href="https://doi.org/10.1109/APPEEC.2009.4918946" target= _blank> https://doi.org/10.1109/APPEEC.2009.4918946 </a>
[18] P. Masache, D. Carrión, and J. Cádenas, “Optimal Transmission Line Switching to Improve the Reliability of the Power System Considering AC Power Flows,” Energies, pp. 1–17, 2021. DOI: <a href="https://doi.org/10.3390/en14113281" target= _blank> https://doi.org/10.3390/en14113281 </a>
[19] G. Gutiérrez-Alcaraz, N. González-Cabrera, and E. Gil, “An efficient method for Contingency-Constrained Transmission Expansion Planning,” Electr. Power Syst. Res., vol. 182, no. January, p. 106208, 2020. DOI: <a href="https://doi.org/10.1016/j.epsr.2020.106208" target= _blank> https://doi.org/10.1016/j.epsr.2020.106208 </a>
[20] A. Dini, A. Azarhooshang, S. Pirouzi, M. Norouzi, and M. Lehtonen, “Security-Constrained generation and transmission expansion planning based on optimal bidding in the energy and reserve markets,” Electr. Power Syst. Res., vol. 193, no. December 2020, p. 107017, 2021. DOI: <a href="https://doi.org/10.1016/j.epsr.2020.107017" target= _blank> https://doi.org/10.1016/j.epsr.2020.107017 </a>
[21] A. M. Leite da Silva, L. S. Rezende, L. M. Honorio, and L. A. F. Manso, “Performance comparison of metaheuristics to solve the multi-stage transmission expansion planning problem,” IET Gener. Transm. Distrib., vol. 5, no. 3, pp. 360–367, 2011. DOI: <a href="https://doi.org/10.1049/iet-gtd.2010.0497" target= _blank> https://doi.org/10.1049/iet-gtd.2010.0497 </a>
[22] R. Hemmati, R. A. Hooshmand, and A. Khodabakhshian, “Comprehensive review of generation and transmission expansion planning,” IET Gener. Transm. Distrib., vol. 7, no. 9, pp. 955–964, 2013. DOI: <a href="https://doi.org/10.1049/iet-gtd.2013.0031" target= _blank> https://doi.org/10.1049/iet-gtd.2013.0031 </a>
[23] J. Palacios and D. Carrión, “Estado del arte de la planeación de expansión de sistemas de transmisión,” I+D Tecnológico, vol. 16, no. 2, 2020. DOI: <a href="https://doi.org/10.33412/idt.v16.2.2835" target= _blank> https://doi.org/10.33412/idt.v16.2.2835 </a>
[24] P. Freitas, L. Macedo, and R. Romero, “A strategy for transmission network expansion planning considering multiple generation scenarios,” Electr. Power Syst. Res., vol. 172, no. December 2018, pp. 22–31, 2019. DOI: <a href="https://doi.org/10.1016/j.epsr.2019.02.018" target= _blank> https://doi.org/10.1016/j.epsr.2019.02.018 </a>
[25] I. M. de Mendonça, I. C. Silva Junior, B. H. Dias, and A. L. M. Marcato, “Identification of relevant routes for static expansion planning of electric power transmission systems,” Electr. Power Syst. Res., vol. 140, pp. 769–775, 2016. DOI: <a href="https://doi.org/10.1016/j.epsr.2016.05.011" target= _blank> https://doi.org/10.1016/j.epsr.2016.05.011 </a>
[26] R. O’Neill, E. Krall, K. Hedman, and S. . Oren, “A model and approach to the challenge posed by optimal power systems planning,” Math. Program., vol. 140, no. 2, pp. 239–266, 2013. DOI: <a href="https://doi.org/10.1007/s10107-013-0695-3" target= _blank> https://doi.org/10.1007/s10107-013-0695-3 </a>
[27] M. Cañas-carretón and M. Carrión, “Generation Capacity Expansion Considering Reserve Probvision by Wind Power Units,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4564–4573, 2020. DOI: <a href="https://doi.org/10.1109/TPWRS.2020.2994173" target= _blank> https://doi.org/10.1109/TPWRS.2020.2994173 </a>
[28] E. Gil, I. Aravena, and R. Cárdenas, “Generation Capacity Expansion Planning Under Hydro Uncertainty Using Stochastic Mixed Integer Programming and Scenario Reduction,” IEEE Trans. Power Syst., vol. 30, no. 4, pp. 1838–1847, 2015. DOI: <a href="https://doi.org/10.1109/TPWRS.2014.2351374" target= _blank> https://doi.org/10.1109/TPWRS.2014.2351374 </a>
[29] G. A. Bakirtzis, P. N. Biskas, and V. Chatziathanasiou, “Generation expansion planning by MILP considering mid-term scheduling decisions,” Electr. Power Syst. Res., vol. 86, pp. 98–112, 2012. DOI: <a href="https://doi.org/10.1016/j.epsr.2011.12.008" target= _blank> https://doi.org/10.1016/j.epsr.2011.12.008 </a>
[30] Y. Feng and S. M. Ryan, “Scenario construction and reduction applied to stochastic power generation expansion planning,” Comput. Oper. Res., vol. 40, no. 1, pp. 9–23, 2013. DOI: <a href="https://doi.org/10.1016/j.cor.2012.05.005" target= _blank> https://doi.org/10.1016/j.cor.2012.05.005 </a>
[31] S. A. Rashidaee, T. Amraee, and M. Fotuhi-Firuzabad, “A linear model for dynamic generation expansion planning considering loss of load probability,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6924–6934, 2018. DOI: <a href="https://doi.org/10.1109/TPWRS.2018.2850822" target= _blank> https://doi.org/10.1109/TPWRS.2018.2850822 </a>
[32] H. Nguyen and F. Felder, “Generation expansion planning with renewable energy credit markets: A bilevel programming approach,” Appl. Energy, vol. 276, no. December 2019, p. 115472, 2020. DOI: <a href="https://doi.org/10.1016/j.apenergy.2020.115472" target= _blank> https://doi.org/10.1016/j.apenergy.2020.115472 </a>
[33] E. de Oliveira, I. da Silva, J. Pereira, and S. Carneiro, “Transmission system expansion planning using a sigmoid function to handle integer investment variables,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1616–1621, 2005. DOI: <a href="https://doi.org/10.1109/TPWRS.2005.852065" target= _blank> https://doi.org/10.1109/TPWRS.2005.852065 </a>
[34] R. Mahanty and P. Gupta, “Transmission network expansion planning with security constraints,” IEE Proceedings-Generation, Transm. …, vol. 151, no. 3, pp. 201–212, 2004. DOI: <a href="https://doi.org/10.1049/ip-gtd" target= _blank> https://doi.org/10.1049/ip-gtd </a>
[35] I. G. Sardou and E. Azad-Farsani, “Network expansion planning with microgrid aggregators under uncertainty,” IET Gener. Transm. Distrib., vol. 12, no. 9, pp. 2105–2114, 2018. DOI: <a href="https://doi.org/10.1049/iet-gtd.2017.1076" target= _blank> https://doi.org/10.1049/iet-gtd.2017.1076 </a>
[36] S. Lumbreras and A. Ramos, “The new challenges to transmission expansion planning. Survey of recent practice and literature review,” Electr. Power Syst. Res., vol. 134, pp. 19–29, 2016. DOI: <a href="https://doi.org/10.1016/j.epsr.2015.10.013" target= _blank> https://doi.org/10.1016/j.epsr.2015.10.013 </a>
[37] R. Chen, A. Cohn, N. Fan, and A. Pinar, “Contingency-risk informed power system design,” IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2087–2096, 2014. DOI: <a href="https://doi.org/10.1109/TPWRS.2014.2301691" target= _blank> https://doi.org/10.1109/TPWRS.2014.2301691 </a>
Downloads
Published
How to Cite
Issue
Section
License
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.