Experimental study on properties of mechanical resistance of polyamide in clay soil
DOI:
https://doi.org/10.15332/iteckne.v18i1.2538Keywords:
Ground improvement, Expansive soil, PA-12, Atterberg’s limit, Unconfined compressive strength, DurabilityAbstract
The presence of clay soil causes problems at the base of the structure: it swells when wet and shrinks when dry, which provides a reduction in the resistance to cutting of the soil. Plastic waste in the form of polyamide powder (PA-12) from the 3D printing industry can be used to improve the mechanical properties of the soil. This experimental study is an attempt to combine these two objectives of stabilizing the soil by using waste PA-12. The mechanical and shear resistant properties gave us confidence in choosing PA-12 as a stabilizer in clay soils, making them composite soils.
Downloads
References
M. George and A. Saminu, “Cement Kiln Dust Stabilization of Compacted Black Cotton Soil Cement Kiln Dust Stabilization of Compacted Black Cotton Soil,” Electron. J. Geotech. Eng., vol. 17, no. March, pp. 825–836, 2016.
A. K. Sabat and A. Pradhan, “Fibre reinforced, fly-ash-stabilized expansive soil mixes as subgrade material in flexible pavement,” Electron. J. Geotech. Eng., vol. 19 T, no. August, pp. 5757–5770, 2014.
Cokca Erdal, “Use of Class C Fly ashes for the Stabilization of an Expansive Soil,” J. Geotech. Geoenvironmental Eng., vol. 127(7), no. July, pp. 568–573, 2001, doi: 10.1017/CBO9781107415324.004.
Oyekan G L, Meshida E A, and Ogundalu A O, “Effect of ground polyvinyl waste on the strength characteristics of black cotton clay soil,” J. Eng. Manuf. Technol., vol. 1, no. 1, pp. 1–10, 2013.
A. S. Muntohar and G. Hantoro, “Influence of rice husk ash and lime on engineering properties clayey subgrade,” Electron. J. Geotech. Eng., vol. 5, no. May, 2000.
Akshay Kumar sabat and Subasis Pati, “A review of literature on stabilization of expansive soil using solid wastes,” Electron. J. Geotech. Eng., vol. 19, no. 1, pp. 6251–6267, 2014.
Suchit Kumar Patel and Baleshwar Singh, “Investigation of glass fibre reinforcement effect on the CBR strength of Cohesive soil,” in Ground Improvement Techniques and Geosynthetics, Lecture Notes in Civil Engineering, vol. 14, Springer Singapore, 2019, pp. 85–94.
Ramya M.S and Jeyapriya S P, “Behaviourial study on geopolymer column in soil,” in Indian Geotechnical Conference, 2016, no. December, pp. 1–5.
Yadav J S and Tiwari S K, “Evaluation of the strength characteristics of cement-stabilized clay – crumb rubber mixtures for its sustainable use in geotechnical applications,” Environ. Dev. Sustain., vol. 1, no. 1, pp. 1–25, 2017, doi: 10.1007/s10668-017-9972-2.
Sivapriya S.V and Charumathy N, “Effect of crumb rubber on inorganic and high compressible clay,” Adv. Mater. Metall., vol. 1, no. 1, pp. 159–169, 2019, doi: https://doi.org/10.1007/978-981-13-1780-4_17.
Sivapriya S.V, “Stress-strain and penetration characteristics of clay modified with crumb rubber,” Rev. Fac. Ing., vol. 28, no. 49, pp. 65–75, 2018, doi: 10.19053/01211129.v28.n49.2018.8745.
Sivapriya S.V, “Compaction Characteristics of Modified Clay Soils with Various Proportions of Crumb Rubber,” in Sustainable practices and Innovations in Civil Engineering, 2021, pp. 183–190.
Mirzababaei M, Arulrajah A, and Ouston M, “Polymers for stabilization of soft clay soils,” in Transportation geotechnics and geoeclogy, 2017, vol. 189, no. 5, pp. 25–32, doi: 10.1016/j.proeng.2017.05.005.
Kalnad Chandrashekhar, “A review on 3D Printing,” Int. J. Adv. Res. Electron. Commun. Eng., vol. 5, no. 7, pp. 2001–2004, 2016.
Sculpteo, “The State of 3D Printing Report,” Sculpteo, A brand BASF, 2020. sculpteo.com.
Z. Liu, Q. Jiang, Y. Zhang, T. Li, and H. C. Zhang, “Sustainability of 3D printing: A critical review and recommendations,” ASME 2016 11th Int. Manuf. Sci. Eng. Conf. MSEC 2016, vol. 2, pp. 1–8, 2016, doi: 10.1115/MSEC2016-8618.
Sam Taylor, “Waste Management Implications of 3D Printing,” EcoMENA, 2019. www.ecomena.org/3d-printing-wastemanagement.
Bureau of Indian Standard(BIS), IS 2720 (Part III/I) Determinationof Specific Gravity of Fine granied Soil, no. March 1981. 1997, pp. 1–10.
Bureau of Indian Standard, IS 2720 (Part IV) Methods of test for soil - Grain size analysis. 1995, pp. 1–40.
Bureau of Indian Standard, IS 2720 (Part V) Determination of Liquid and Plastic Limit. 1995, pp. 1–17.
Bureau of Indian Standard, IS 2720 (Part VI)- Detrmination of Shrinkage Factors, vol. 2720, no. July 1972. 2001, pp. 1–20.
Bureau of Indian Standard, IS 2720 -Part 8 : Determination of water content - dry density relation using heavy compaction. 2006, pp. 1–14.
Bureau of Indian Standards(BIS), IS 2720(Part 10) - Determination of Unconfined Compressive Strength, vol. 2720. 1995, pp. 1–8.
Bureau of Indian Standard, IS 1498-1970 (Reaffirmed 2002) : Classification and indentification of soil. 2002, pp. 1–28.
Downloads
Published
How to Cite
Issue
Section
License
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.