Thermomechanical response of a viscoelastic Ni-Ti – Shape Memory Alloy composite beam

Authors

  • Diego Andrés Campo-Ceballos Corporación Universitaria Comfacauca Popayán
  • Emanuelle Pacheco Rocha-Lima Universidade de Brasília
  • Flaminio Levy-Neto Universidade de Brasília

DOI:

https://doi.org/10.15332/iteckne.v16i2.2355

Keywords:

Adaptative composite beams, vibration control, NITINOL

Abstract

This investigation is concerned with the mechanical behavior of Shape Memory Alloy Hybrid Composite Beams (SMAHC), that consist of a circular bar of NiTi alloy incorporated in a 500 mm long cylindrical pipe of polypropylene (PP), with external diameter 50 mm and nominal wall thickness 7 mm, wound with a nylon/epoxy layer. The Ni-Ti alloy was characterized using: scanning electron microscopy (SEM); X-ray diffraction (XRD) and Differential thermal analysis (DSC). The nominal chemical composition of the alloy is 50.05 %Ni / 49.95%Ti, and the softer martensite is the predominant phase at room temperature. The approximate martensite (M) to Austenitic (A) phase transformation temperatures were Mstart = 32°C, Mfinal = 46°C, Astart = 38 °C and Afinal = 60°C. For temperature T<Mfinal, Ni-Ti bar presents 100% martensitic phase, whereas for T>Afinal it is fully converted in the Austenitic phase; and its elasticity modulus increases by a factor up to three times. This significant change in stiffness of Ni-Ti, without changing its mass, has motivated the application of such alloy in machine vibration control. The SMAHC beams were subjected to static three-point bending tests, in the elastic regime. Experimental results showed that, in average, at 21°C, the PP pipes effective flexural elastic modulus increased 112%, from 757 MPa to 1609 MPa, when the Ni-Ti bar and the external layer of nylon/epoxy were incorporated to the PP pipe, creating a smart beam. These last results indicate that the SMAHC beam can work as an adaptative structure.

Downloads

Download data is not yet available.

References

Srinivasan, A.V. and McFarland, M.D., Smart Structures Analysis and Design. Cambridge University Press, 2001. https://doi.org/10.1088/0957-0233/13/9/710

Turner, T.L., Thermomechanical Response of Shape Memory Alloy Hybrid Composites. NASA Technical Memorandum. NASA/TM-2001-210656, Langley Research Center, Hampton, 2001.

Otsuka, K., Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci., 50(5), 511–678.2005. https://doi.org/10.1016/j.pmatsci.2004.10.001

Zak, A.J.; Cartmell, M.P.; Ostachowicz, W. M., Dynamics and control of a rotor using an integrated SMA/composite active bearing actuator. Key Engineering Materials, Switzerland, v. 245-246, pp. 233-240, 2003. https://doi.org/10.4028/www.scientific.net/KEM.245-246.233

H. González-Acevedo and H. González-Acuña. Diseño de un sistema de control avanzado para regular la velocidad de una turbina de vapor acoplada a un generador DC, Iteckne, vol. 15, no. 1, p. 51, 2018. https://doi.org/10.15332/iteckne.v15i1.1964

ASTM D790-17, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, 2007, www.astm.org. https://doi.org/10.1520/D0790-17

Mendonça, P.T.R. Materiais Compostos e Estruturas Sanduíche. Editora Manole, São Paulo, 2005 (in Portuguese).

Levy Neto, F, Pardini L.C. Compósitos Estruturais: Ciência e Tecnologia. Blucher. 2ª edição. 2016. (in Portuguese).

Sacco, E., & Artioli, E. Shape Memory Alloy Engineering. Shape Memory Alloy Engineering (pp. 141–192). 2015. Elsevier. https://doi.org/10.1016/B978-0-08-099920-3.00006-1

Guo, Y., Klink, A., Fu, C., & Snyder, J. Machinability and surface integrity of Nitinol shape memory alloy. CIRP Annals - Manufacturing Technology, 62(1), 83–86. 2013. https://doi.org/10.1016/j.cirp.2013.03.004

Yuan B., Chung C.Y., M. Zhu. Microstructure and martensitic transformation behavior of porous Ni-Ti shape memory alloy prepared by hot isostatic pressing processing. Materials Science and Engineering A 382 p181–187.2004. https://doi.org/10.1016/j.msea.2004.04.068

Frederick E. Wang, V - Nitinol; A Metal-Alloy with Memory, In Bonding Theory for Metals and Alloys, Elsevier, Amsterdam, 2005, Pages 109-152, ISBN 9780444519788, https://doi.org/10.1016/B978-044451978-8/50008-8

Kłaput, J. Studies of selected mechanical properties of nitinol – shape memory alloy. Archives of foundry engineering, 10(3), 155–158. 2010.

P. Faluhelyi, F. Levy-Neto, E. P. da Silva, and M. V. C. Sá. Comportamento termoelástico de vigas SMAHC sob flexão em duas temperaturas. Rev. Mater., vol. 18, no. 4, pp. 1491–1500, 2013. http://dx.doi.org/10.1590/S1517-70762013000400010

P. V. Muterlle et al. Effect of Aging Treatment on Phase Transformation of a Pseudoelastic NiTi Alloy. Advanced Materials Research, Vol. 936, pp. 1216-1223, 2014. https://doi.org/10.4028/www.scientific.net/AMR.936.1216

J. J. Gil-Peláez and L. Suárez. Factor de pérdida global en estructuras de acero con amortiguadores viscoelásticos mediante ecuaciones de estado. Iteckne, vol. 13, no. 2, p. 146, 2016. https://doi.org/10.15332/iteckne.v13i2.1479

M. Shariyat, A. Mozaffari, and M. H. Pachenari. Damping sources interactions in impact of viscoelastic composite plates with damping treated SMA wires, using a hyperbolic plate theory. Appl. Math. Model., vol. 43, pp. 421–440, 2017. https://doi.org/10.1016/j.apm.2016.11.028

X. Zhao, T. Chen, and S. Wang. Effect of NiTi content and test temperature on mechanical behaviors of NiTi–PU composites. Int. J. Light. Mater. Manuf., vol. 1, no. 4, pp. 215–218, 2018. https://doi.org/10.1016/j.ijlmm.2018.09.003

Downloads

Published

2019-12-16

How to Cite

Campo-Ceballos, D. A., Pacheco Rocha-Lima, E., & Levy-Neto, F. (2019). Thermomechanical response of a viscoelastic Ni-Ti – Shape Memory Alloy composite beam. ITECKNE, 16(2), 118–125. https://doi.org/10.15332/iteckne.v16i2.2355

Issue

Section

Research and Innovation Articles