Graphene reinforced aluminum matrix composite obtaining by powder metallurgy
DOI:
https://doi.org/10.15332/iteckne.v16i2.2353Keywords:
Powder metallurgy, metal matrix, composite material, grapheneAbstract
Several researchers have reported graphene as an ideal reinforcement for composite materials due to its interesting properties [1]. The graphene-reinforced aluminium matrix composite material was obtaining by powder metallurgy. This study investigated the effect of aluminum powder morphology on compaction capacity and mechanical strength of composite material. Different milling times were used to determine the optimal time required in manufacturing. The proper compaction load was determined change its values and analyzing the effect of the different loads on the characteristics of the composite. Sintering parameters were established according to previous studies employed by other researchers. Finally, it is determined that with 0.5% wt graphene presents phenomena of grain refinement and higher electrical conductivity of the compound with respect to powder metallurgical aluminum.
Downloads
References
M. Rashad, F. Pan, A. Tang, and M. Asif, “Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Science: Materials International, vol. 24 (2), pp. 101-108, Apr. 2014. DOI: https://doi.org/10.1016/j.pnsc.2014.03.012
S. Kalpakjian, Manufactura, ingeniería y tecnología (5ta edición). México: Pearson Educación, 2008.
M. K. Surappa, “Aluminium matrix composites: Challenges and opportunities,” Sadhana, vol. 28 (1-2), pp.319-334, Feb. 2003. DOI: https://doi.org/10.1007/BF02717141
P. Garg, P. Gupta, D. Kumar, and O. Parkash, “Structural and Mechanical Properties of Graphene reinforced Aluminum Matrix Composites,” Journal of materials and environmental science, vol. 7 (5), pp. 1461-1473, Feb. 2016.
R. Pérez, D. Bolaños, J. Bonilla, I. Estrada, and R. Martínez, “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” Journal of Alloys and Compounds, vol. 615 (1), pp. S578-S582, Dec. 2014. DOI: https://doi.org/10.1016/j.jallcom.2014.01.225
T. Fett, G. Rizzi, E. Ernst, R. Müller, and R. Oberacker, “A 3-balls-on-3-balls strength test for ceramic disks,” Journal of the European Ceramic Society, vol. 27 (1), pp. 1-12, Apr. 2006. DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.02.033
S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, “Graphene–aluminum nanocomposites,” Materials Science and Engineering: A, vol. 528 (27), pp. 7933-7937, Oct. 2011. DOI: https://doi.org/10.1016/j.msea.2011.07.043
S. J. Yan, S. L. Dai, X. Y. Zhang, C. Yang, Q. H. Hong, J. Z. Chen, and Z. M. Lin, “Investigating aluminum alloy reinforced by graphene nanoflakes,” Materials Science and Engineering: A, vol. 612, pp. 440-444, Aug. 2014. DOI: https://doi.org/10.1016/j.msea.2014.06.077
H. K. Tönshoff, and B. Denkena, Basics of Cutting and Abrasive Processes. Berlin: Springer-Verlag Berlin Heidelberg, 2013.
D. P. Hansora, N. G. Shimpi, and S. Mishra, “Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications,” JOM, vol. 67 (12), pp. 2855-2868, Dec. 2015. DOI: https://doi.org/10.1007/s11837-015-1522-5
C. Suryanarayana, “Mechanical alloying and milling,” Progress in Materials Science, vol. 46 (1-2), pp. 1-184, Jan. 2001. DOI: https://doi.org/10.1016/S0079-6425(99)00010-9
K. Skotnicova, M. Kursa, and I. Szurman, Powder Metallurgy. Ostrava: Tecnhical University of Ostrava, 2014.
J. Wang, Z. Lia, G. Fan, H. Pan, Z. Chen, and D. Zhang, “Reinforcement with graphene nanosheets in aluminum matrix composites,” Scripta Materialia, vol. 66 (8), pp. 594-597, Apr. 2012. DOI: https://doi.org/10.1016/j.scriptamat.2012.01.012
S. Ma, E. Xu, Z. Zhu, Q. Liu, S. Yu, J. Liu, H. Zhong, and Y. Jiang, “Mechanical and wear performances of aluminum/sintered-carbon composites produced by pressure infiltration for pantograph sliders,” Powder Technology, vol. 326, pp. 54-61, Feb. 2018. DOI: https://doi.org/10.1016/j.powtec.2017.12.027
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146 (9-10), pp. 351-355, Jun. 2008. DOI: https://doi.org/10.1016/j.ssc.2008.02.024
Downloads
Published
How to Cite
Issue
Section
License
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.