Global loss factor in steel structures with viscoelastic dampers through state equations

Authors

  • Jhon Jairo Gil-Peláez Universidad Santo Tomás Bucaramanga
  • Luis Suárez University of Puerto Rico Mayagüez

DOI:

https://doi.org/10.15332/iteckne.v13i2.1479

Keywords:

Viscoelastic dampers, viscoelastic materials, energy dissipation, loss factor

Abstract

In this work, is presented a method based on use complex eigenvalues to determine factors of overall loss  and  equivalent  natural  frequencies  in  a  steel  frame  with  viscoelastic  dampers  in  the  bracing  bars.  The complex eigenvalues  are  obtained  to  solve  the  eigenvalue problem associated with the equations of motion written  as  state  equations  of  first  order.  A study using three-dimensional finite element models developed in ABAQUS program including variations with frequency of materials was also made. The estimations at the global loss factors was achieved from an analysis of the frames subjected  to  a  harmonic  load  in  regime  using  the  half power method. The study allows to check the effectiveness of the technique on the level of additional damping can be achieved.

Downloads

Download data is not yet available.

Author Biographies

Jhon Jairo Gil-Peláez, Universidad Santo Tomás Bucaramanga

Ph.D. Civil Engineering

Luis Suárez, University of Puerto Rico Mayagüez

Ph.D. Engineering Mechanics

References

R. M. Christensen, “Theory of Viscoelasticity: an Introduction,” New York: Academic Press, 1971.

Construcción y evaluación de un dipolo en la banda de 2.4 GHz utilizando tecnología de microcinta. Bermúdez, H. F., Botero, S. y Gómez, M.A. ISSN 0122-1701, Pereira, Risaralda - Colombia: Universidad Tecnológica de Pereira, Abril de 2010., Scientia et Technica, pp. 25-30.

W. Flugge, “Viscoelasticity,” Waltham, Massachusetts: Blaisdell Publishing Company, 1967.

Balanis, C.A. Antenna Theory Analysis and Design. Second edition. New York : John Wiley and Sons Inc., 1997.

R. Lewandowski y B. Chorazyczewski, “Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers,” Computers & Structures , vol. 88, pp. 1-17, 2010.

Krauss, J. D. y Marhefka, R. J. Antennas for all applications. New York : McGraw-Hill. Third Edition, 2001.

T. T. Soong y G. F. Dargush, “Passive Energy Dissipation Systems in Structural Engineering,” Chichester: John Wiley & Sons, 1997.

Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays. Pozar, D. M. y Schaubert, D. H. 1995, IEEE press, p. 59.

A. D. Nashif, D. I. G. Jones y J. Henderson, “Vibration Damping,” New York: John Wiley & Sons, 1985.

Radiation properties of mocrostrip dipoles. Uzunoglu, N.K., Alexopoulos, N.G. y Fikioris, J.G. 1979, IEEE Trans. Antennas propagate., Vol. AP27, No. 6, November, pp. 853-858.

C. T. Sun y Y. P. Lu, “Vibration Damping of Structural Elements,” Englewood Cliffs, New Jersey: Prentice Hall PRT, 1995.

Fundamental superstrate (cover) effects on printed circuit antennas. Alexopoulos, N.G. y Jackson, D.R. 1984, IEEE Trans. Antennas Propagat., Vol. AP-32, No. 8, August., pp. 807-816.

G. Luca Ghiringhellia y M. Terraneob, “Analytically driven experimental characterisation of damping in viscoelastic materials,” Aerospace Science and Technology, vol. 40, pp. 75-85, 2015.

Stutzman, W. L. y Thiele, G. A. Antenna Theory and Design, 2nd ed. New York.: John Wiley and Sons. Inc, 1998.

T. Karavasilis, T. Blakeborough y M. Williams, “Development of nonlinear analytical model and seismic analyses of a steel frame with self-centering devices and viscoelastic dampers,” Computers and Structures, vol. 89, p. 1232-1240, 2011.

Elliott, R. S. Antenna Theory and Design, Revised Edition. New Jersey : John Wiley & Sons. Inc. Hoboken, 2003.

J. Kim, J. Ryu and L. Chung, “Seismic performance of structures connected by viscoelastic dampers,” Engineering Structures, vol. 28, pp. 183-195, 2006.

Orfanidis, S.J. , NJ. Electromagnetic Waves and Antennas. New Jersey: ECE Department Rutgers University. Piscataway, 2006.

K. C. Chang y Y. Y. Lin, “Seismic Response of Full-Scale Structure with Added Viscoelastic Dampers,” vol. 130, nº 4, pp. 600-608, 2004.

Microstrip antenna tehnology. Carver, K.R. y Mink, J.W. 1981, IEEE Trans. Antenas Propagat. Vol. AP-29 No. 1. January, pp. 2-24.

K. C. Chang, T. T. Soong, S.-T. Oh y M. Lai, “Seismic Behavior of Steel Frame with Added Viscoelastic Dampers,” vol. 121, nº 10, pp. 1418-1426, 1995.

James, J.R. y Hall, P.S. Handbook of microstrip antennas. Vols. 1 y 2. London, UK. : Peter Peregrinus Ltd., 1989.

I. D. Aiken, J. M. Kelly y P. Mahmoodi, “The Application of Viscoelastic Dampers to Seismically Resistant Struture,” vol. 3, pp. 459-468, 1990.

Current distribution and impedance of printed dipoles. Rana, I. E. y Alexopoulos, N.G. 1981, IEEE Trans. Antennas Propagat., Vol. AP-29, No. 1, January, pp. 99-105.

R. F. Lobo, J. M. Bracci, K. L. Shen, A. M. Reinhorn y T. T. Soong, “Inelastic Response of R/C Structures with Viscoelastic Braces,” vol. 9, nº 3, pp. 419-446, 1993.

Integral equation formulation of microstrip antennas. Bailey, M.C. y Deshpande, M.D. 1982, IEEE Trans. Antennas Propagat., Vol. AP-30, No. 4, July, pp. 651-656.

C. Constantin, A. Filiatrault y V. Bertero, “Principles of passive supplemental damping and seismic isolation,” Pavia: IUSS Press, 2006.

General integral equation formulation for microstrip antennas and scatterers. Mosig, J.R. y Gardiol, F.E.. 1985, Proc. Inst. Elect. Eng., pt. H. Vol 132., pp. 424-432.

P. Mahmoodi, L. E. Robertson, M. Yontar, C. Moy y L. Feld, “Performance of Viscoelastic Dampers in World Trade-Center Towers. Dynamics of Structures,” pp. 632-644, August 1987.

Performance of probe-fed rectangular microstrip patch element phased arrays. Lui, C.C., Hessel, A. y Shmoys, J. 1988, IEEE Trans. Antennas Propagat., Vol. AP-36, No. 11, November., pp. 1501-1509.

P. Mahmoodi y C. J. Keel, “Performance of Viscoelastic Structural Dampers for the Columbia Center Building, Building motion in wind,” pp. 83-106, 1986.

Analysis of infinite arrays of one and two probefed circular patches. Aberle, J.T. y Pozar, D.M. 1990, IEEE Trans. Antennas Propagat., Vol. AP38, No. 4, April., pp. 421-432.

Z.-D. Xu, H.-T. Zhao y A.-Q. Li, “Optimal analysis and experimental study on structures with viscoelastic dampers,” Journal of Sound and Vibration, vol. 273, pp. 607-618, 2004.

Valero, N. A. Resolución de problemas electromagnéticos complejos mediante análisis circuital generalizado. Tesis Doctoral. Valencia : Universidad Politécnica de Valencia, 1997.

A. Bilbao, R. Avilés, J. Agirrebeitia y G. Ajuria, “Proportional damping approximation for structures with added viscoelastic dampers,” Finite Elements in Analysis and Design, vol. 42, pp. 492-502, 2006.

Sadiku, M. Numerical Techniques in Electromagnetics. Second Edition. New York : CRC Press LLC., 2000.

A. de Lima, D. Rade and F. Le´poreNeto, “An efficient modeling methodology of structural systems containing viscoelastic dampers based on frequency response function substructuring,” Mechanical Systems and Signal Processing, vol. 23, p. 1272-1281, 2009.

Electromagnetic Scattering by Surface of Arbitrary Shape. Rao, S., Wilton, D. y Glisson, A. 1982, IEEE Transactions on Antennas and Propagation. Vol. AP30. No.3, pp. 409-418.

I. Saidi, E. F. Gad, J. L. Wilson y N. Haritos, “Development of passive viscoelastic damper to attenuate excessive floor vibrations,” Engineering Structures, vol. 33, pp. 3317-3328, 2011.

Makarov, S. N. Antenna and EM Modeling with Matlab. New York: John Wiley & Sons, Inc., 2002.

E. Moliner, P. Museros y M. Martínez-Rodrigo, “Retrofit of existing railway bridges of short to medium spans for high-speed traffic using viscoelastic dampers,” Engineering Structures, vol. 40, pp. 519-528, 2012.

Cardama, A. y Jofre, L. Antenas. Barcelona : Edicions UPC, 2002.

M. Rijnen, F. Pasteuning, R. Fey, G. vanSchothorst y H. Nijmeijer, “A numerical and experimental study on viscoelastic damping of a 3D structure,” Journal of Sound and Vibration, vol. 349, pp. 80-98, 2015.

Bermúdez O., Héctor Fabio. Efecto del acoplamiento mutuo en arreglos de antenas tipo parche en la banda de 2,4 GHz. Popayán: Tesis de maestría, 2

J. J. Gil Peláez, “Disertación. Amortiguamiento en estructuras de acero utilizando materiales viscoelásticos,” Mayaguez: Departamento de Ingeniería Civil y Agrimensura, UPRM, 2008.

J. J. Gil Peláez y L. E. Suarez, “Amortiguamiento de estructuras de acero mediante tratamiento a cortante,” Iteckne, vol. 7, nº 1, pp. 34-45, 2010.

L.-Y. Lu, G.-L. Lin y M.-H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation,” Engineering Structures, vol. 34, p. 111-123, 2012.

K. C. Chang, S. J. Chen y M. L. Lai, “Inelastic Behavior of Steel Frames with Added Viscoelastic Dampers,” vol. 122, nº 10, pp. 1178-1186, 1996.

K.-W. Min, J. Kim y S.-H. Lee, “Vibration Test of 5-Storey Steel Frame with Viscoelastic Dampers,” vol. 26, pp. 831-839, 2004.

R. Lewandowski and Z. Pawlak, “Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives,” Journal of Soundand Vibration, vol. 330, pp. 923-936, 2011.

Z. Pawlak y R. Lewandowski, “The continuation method for the eigenvalue problem of structures with viscoelastic dampers,” Computers and Structures, vol. 125, p. 53-61, 2013.

D. M. Bergman y R. D. Hanson, “Viscoelastic Mechanical Damping Devices Tested at Real Eathquake Displacements,” vol. 9, nº 3, pp. 389-417, 1993.

L. Meirovitch, “Elements of Vibration Analysis,” New York: McGraw-Hill, 1986.

F. Hejazi, A. Zabihi y M. Jaafar, “Development of elasto-plastic viscous damper finite element model for reinforced concrete frames,” Soil Dynamics and Earthquake Engineering, vol. 65, pp. 284-293, 2014.

Published

2016-09-22

How to Cite

Gil-Peláez, J. J., & Suárez, L. (2016). Global loss factor in steel structures with viscoelastic dampers through state equations. ITECKNE, 13(2), 146–156. https://doi.org/10.15332/iteckne.v13i2.1479

Issue

Section

Research and Innovation Articles