Measurement of pressure losses using computer vision

Authors

  • Jorge Andrés Cerquera-Yacumal Ingeniero en Automática Industrial Universidad del Cauca
  • John Edwin Córdoba-Papamija Ingeniero en Automática Industrial Universidad del Cauca
  • Judy Cristina Realpe-Chamorro M. Sc. Electrónica y Telecomunicaciones Universidad del Cauca
  • Juan Fernando Flórez-Marulanda M. Sc. Electrónica y Telecomunicaciones Universidad del Cauca

DOI:

https://doi.org/10.15332/iteckne.v13i1.1383

Keywords:

Codebook, computer vision, background subtraction, Instrumentation and measurement, Piezometer

Abstract

In a hydraulic circuit, the fluid pressure loss when passing through different sections or accessories, and  it  can  be  inspected  by  observing  the  fluid  level  in piezometers. This paper presents a development in artificial vision, which allows on-line measurement of pressure levels recorded in sixteen piezometric columns. The technique of background subtraction based in algorithm on Codebook, combined with  morphological  filtering and  junction  blobs,  are  used  to  obtain  piezometrics  levels.  The processing algorithm is designed in Open CV and supported on Linux. Coefficients of variation of less than 0.1% and maximum error of 1.4% were obtained.

Downloads

Download data is not yet available.

References

L. Fortuna, S. Graziani, and M. G. Xibilia, Soft sensors for monitoring and control of industrial processes. 2007.

T.-H. Wang, M.-C. Lu, C.-C. Hsu, C.-C. Chen, and J.-D. Tan, “Liquid level measurement using a single digital camera,” Measurement, vol. 42, pp. 604-610, 2009.

D. Yasuhiko and S. J. Ovaska, “Industrial applications of soft computing: A Review,” Proc. IEEE, vol. 89, no. 9, 2001.

W. Healy, “Building america meeting on miagnostic measurement and performance feedback for residential space conditioning equipment,” Build. Sensors Energy Monit. Syst., no. July, 2010.

G. Heredia and A. Ollero, “Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft,” Sensor, vol. 10, pp. 2188-2201, 2010.

W. Wei, L. Chunfang, and X. Xinhe, “Simulation of robot localization based on virtual sensors,” in 2008 Chinese Control and Decision Conference, 2008, pp. 248-252.

J. P. Sebastiá, J. Alberola, and R. Lajara, “Physical signal conditioning for GMR magnetic sensors : Applied to traffic speed monitoring GMR sensors,” Sensors Actuators A Phys., vol. 137, pp. 230-235, 2007.

P. Ibarguengoytia, A. Reyes, M. Huerta, and J. Hermosillo, “Probabilistic virtual sensor for on-line viscosity estimation,” in Artificial Intelligence, 2008. MICAI ’08. Seventh Mexican International Conference on, 2008, pp. 3777-782.

N. Hardy and A. Ahmad, “De coupling for re use in design and implementation using virtual sensors,” Auton. Robot., vol. 6, pp. 265-280, 1999.

N. Hardy and A. Ahmad, “ViSIAr – A virtual sensor integration architecture,” Robotica, vol. 17, pp. 637-647, 1999.

E. Velásquez, “Lectura automática de instrumentos de medida mediante técnicas de visión artificial,” Universidad de Vigo, 2008.

E. Vázquez-Fernández, A. Dacal-Nieto, H. González-Jorge, F. Martín, A. Formella, and V. Álvarez-Valado, “A machine vision system for the calibration of digital thermometers,” Meas. Sci. Technol., vol. 20, no. 6, p. 065-106, Jun. 2009.

P. Jampana, “Computer vision based sensors for chemical processes outline introduction,” University of Alberta, 2009.

E. Valverde and J. Valverde, “Diseño e implementación de un laboratorio remoto: caso de estudio planta de pérdidas de carga en conductos a presión del Laboratorio de Hidraúlica,” Universidad del Cauca, 2010.

K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time foreground–background segmentation using codebook model,” Real-Time Imaging, vol. 11, no. 3, pp. 172-185, Jun. 2005.

R. Lagani, OpenCV 2 Computer Vision Application Programming Cookbook. Packt Publishing Ltd, 2011.

I. Corporation, “Intel Corporation.pdf,” 2012. [Online]. Available: http://developer.intel.com.

G. Bradski and A. Kaehler, Learnig OpenCV. O’Reilly Media, Inc., 2008.

R. Gonzalez and R. Woods, Digital image processing. Prentice Hall Upper Saddle River, 2002.

N. Raveendranathan, V. Loseu, E. Guenterberg, R. Giannantonio, R. Gravina, M. Sgroi, and R. Jafari, “Implementation of virtual sensors in body sensor networks with the SPINE framework,” 2009 IEEE Int. Symp. Ind. Embed. Syst., pp. 124-127, Jul. 2009.

J. A. Cerquera and J. E. Córdoba, “Medición y pérdidas de presión usando visión por computador,” Universidad del Cauca, 2012.

A. Senior, A. Hampapur, Y.-L. Tian, L. Brown, S. Pankanti, and R. Bolle, “Appearance models for occlusion handling,” Image Vis. Comput., vol. 24, no. 11-1, pp. 1233-1243, 2014.

F. Chang, C. Chen, and C. Lu, “A linear-time component-labeling algorithm using contour tracing technique,” Comput. Vis. image Underst., vol. 93, pp. 206-220, 2003.

I. Espejo, F. Fernández, M. López, M. Muñoz, A. Rodríguez, A. Sánchez, and C. Valero, “Estadística descriptiva y probabilidad: (Teoría y problemas),” Universidad de Cádiz, 2009.

Published

2016-04-04

How to Cite

Cerquera-Yacumal, J. A., Córdoba-Papamija, J. E., Realpe-Chamorro, J. C., & Flórez-Marulanda, J. F. (2016). Measurement of pressure losses using computer vision. ITECKNE, 13(1), 64–73. https://doi.org/10.15332/iteckne.v13i1.1383

Issue

Section

Research and Innovation Articles