Classification of Hyperkinetic, Hypokinetic and Normal Segments in Ventriculographic Images, using Centerline Method

Authors

  • Hernando José Velandia-Villamizar M. Sc. Ingeniería Biomédica Universidad de Pamplona
  • Rubén de Jesús Medina-Molina Ph. D. Procesamiento de Señales y Comunicaciones Universidad de los Andes
  • Luis Enrique Mendoza M. Sc. Ingeniería Biomédica Universidad de Pamplona

DOI:

https://doi.org/10.15332/iteckne.v13i1.1382

Keywords:

left ventricular wall, software platform, ventriculographic images, hypokinesis, hyperkinesis

Abstract

Evaluation  of  regional  left  ventricular  wall motion  is  of  vital  importance  at  the  clinical  level,  since  this  cavity  is  the  most  susceptible  to  severe  damage in diseases such as arterial hypertension,  diabetes mellitus  and  atherosclerosis.  This paper reports on the design of a software platform for the estimation of parameters describing the left ventricular wall motion in ventriculographic images. The system focuses on end-diastolic and  end-systolic  contours.  Firstly is  carried  out  a process of manual segmentation by the specialist, then 100 chords generated between two ventricular contours are  quantified,  which  allows  the  classification  of  these segments  (normal,  hyperkinetic  and  hypokinetic).  At last, the testing process is performed using actual data acquired in the Institute Autonomy Hospital Universitary of University of the Andes IAHULA.

Downloads

Download data is not yet available.

References

J. Mackay and G. Mensah, Atlas of heart disease and stroke, World Health Organization, 2004.

A. Guyton and J. Hall, Textbook of medical physiology, 10th ed., W. B. Saunders, ch. 10. 2001.

S. Fox, Fisiología humana, 10.ª edición, McGraw-Hill, 2008.

E. Folland, G. Hamilton, S. Larson and J. Kennedy, “The radionuclide ejection fraction: a comparison of three radionuclide techniques whit contrast angiography”, Diagnostic Nuclear Medicine, vol. 18, pp.1159-1166, 1977.

N. Ingels, G. Daughters, E. Stinson and E. Alderman, “Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard”, Circulation, vol. 61, pp. 966-972, 1980.

H. Gelberg, B. Brundage, S. Glantz and W. Parmley, “Quantitative left ventricular wall motion analysis: a comparison of area, chord and radial methods”, Circulation, vol. 59, pp. 991-1000, 1979.

R. Leighton, S. Wilt and R. Lewis, “Detection of hypokinesis by a quantitative analysis of left ventricular cineangiograms”, Circulation, vol. 50, pp. 121-127, 1974.

S. Antoine, “Extraction et caractérisation du mouvement cardiaque in imagerie scanner multibarrette”, Ph.D. dissertation, Université de Rennes, 2006.

A. Bravo, “Simulación y reconstrucción en 4-D del ventrículo izquierdo en imagenología cardiaca”. Tesis doctoral, Universidad Simón Bolívar, Venezuela, 2006.

General Electric Company, “Innova 2000, digital cardiovascular x-ray imaging system”.

J. Sagardi, “El detector digital en un sistema de imagen cardiovascular”, Revista de Física Médica, vol. 3, pp. 35-38, 2002.

F. Sheehan, D. Stewart, H. Dodge, S. Mitren, E. Bolson and B. Brown, “Variability in the measure ment of regional left ventricular wall motion from contrast angiograms, Circulation, vol. 68, pp. 550-559, 1983.

P. Hough, “Method and Means for Recognizing Complex Patterns”. U.S. Patent 3069654, 1962.

R. Duda and P. Hart, “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Comm. ACM, vol. 15, pp. 11-15, 1972.

J. Zhang, J. Hu, “Image segmentation based on 2d otsu method with histogram analysis”. International Conference on Computer Science and Software Engineering, vol. 6, pp. 105-108, 2008.

J. Canny, “A computational approach to edge detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-698. 1986.

F. Sheehan, E. Bolson, H. Dodge, D. Mathey, J. Schofer, H. Woo. “Advantages and applications of the centerline method for characterizing regional ventricular function”. Circul ition, vol. 74, pp. 293-305. [Online]. Available: http://circ.ahajournals. 1986.

Published

2016-04-04

How to Cite

Velandia-Villamizar, H. J., Medina-Molina, R. de J., & Mendoza, L. E. (2016). Classification of Hyperkinetic, Hypokinetic and Normal Segments in Ventriculographic Images, using Centerline Method. ITECKNE, 13(1), 57–63. https://doi.org/10.15332/iteckne.v13i1.1382

Issue

Section

Research and Innovation Articles