Euclidian, FDA and SVM weak classifiers fusion using a posteriori confidence classification (APCC)
DOI:
https://doi.org/10.15332/iteckne.v12i2.1238Keywords:
Classification systems, multiclass problems, weak features, weak classification, APCC.Abstract
The 2-class and multiclass classification systems have important issues when there is overlapping between the samples, insufficient representation of the classes or asymmetrical data representation. Sophisticated classification systems such as SVM and SVM-RBF may have generalization problems, so it is complicated to obtain successful classifiers. In this work it is shown how the use of classification fusion of simpler classifiers may improve the overall classification by using APCC (A Posteriori Confidence Classification). APCC defines the individual reliability of each parameter and each classification system per parameter, and produces a posteriori weight to each classifier according to its output. The developed protocols were tested using simulated data and real data from TPOEM (Temporal Patterns of Oriented Edge Magnitudes) and VPOEM (Volumetric Patterns of Oriented Edge Magnitudes) for facial expression representation. In both cases the use of APCC and classifier fusion allowed to improve the classification accuracy.
Downloads
References
H. Xiong, J. Wu, and L. Liu, “Classification with Class Overlapping: A Systematic Study,” in The 2010 International Conference on E-Business Intelligence, 2010, pp. 491-497.
W. Tang, K. Z. Mao, L. O. Mak, and H. W. Ng, “Classification for overlapping classes using optimized overlapping region detection and soft decision,” in Information Fusion (FUSION), 2010 13th Conference on, 2010, pp. 1-8.
M. Denil and T. Trappenberg, “Overlap versus Imbalance,” in Advances in Artificial Intelligence, 2010, pp. 220-231.
V. García, R. A. Mollineda, and J. S. Sánchez, “On the k-NN performance in a challenging scenario of imbalance and overlapping,” Pattern Anal. Appl., vol. 11, no. 3-4, pp. 269-280, Sep. 2007.
R. C. Prati, G. E. A. P. A. Batista, and M. C. Monard, “Class imbalances versus class overlapping: an analysis of a learning system behavior,” in MICAI 2004: Advances in Artificial Intelligence, 2004, pp. 312-321.
Y. Tang and J. Gao, “Improved classification for problem involving overlapping patterns,” IEICE Trans. Inf. Syst., vol. 90, no. 11, pp. 1787-1795, 2007.
G. E. Batista, R. C. Prati, and M. C. Monard, “Balancing strategies and class overlapping,” in Advances in Intelligent Data Analysis VI, 2005, pp. 24-35.
G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM SIGKDD Explor. Newsl., vol. 6, no. 1, p. 20, Jun. 2004.
Y. Han, F. Wu, J. Jia, Y. Zhuang, and B. Yu, “Multi-Task Sparse Discriminant Analysis (MtSDA) with Overlapping Categories,” in Proceedings of the Twenty-Fourth AAAI Conference on Artificial Inteligence (AAAI-10), 2010, pp. 469-474.
S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared subspace for multi-label classification,” in Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08, 2008, pp. 381-389.
T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-WIDE: A Real-World Web Image Database from National University of Singapore,” in Proceedings of the ACM International Conference on Image and Video Retrieval, 2009, p. 48.
M. Wang, L. Yang, and X. Hua, “MSRA-MM: Bridging Research and Industrial Societies for Multimedia Information Retrieval,” Microsoft Res. Asia, Tech. Rep, pp. 1-14, 2009.
S.-J. Kim, A. Magnani, and S. P. Boyd, “Robust fisher discriminant analysis,” in Advances in Neural Information Processing System, 2005, vol. 1, pp. 659-666.
S. Abe, Support vector machines for pattern classification. Springer, 2010.
C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998.
G. C. Cawley and N. L. Talbot, “On over-fitting in model selection and subsequent selection bias in performance evaluation,” J. Mach. Learn. Res., vol. 11, no. 1, pp. 2079-2107, 2010.
N.-S. Vu and A. Caplier, “Enhanced patterns of oriented edge magnitudes for face recognition and image matching,” Image Process. IEEE Trans., vol. 21, no. 3, pp. 1352-1365, 2012.
E. Silva, C. Esparza, and Y. Mejía, “POEM-based Facial Expression Recognition, a New Approach,” in Image, Signal Processing, and Artificial Vision (STSIVA), 2012 XVII Symposium of, 2012, pp. 162-167.
Downloads
Published
How to Cite
Issue
Section
License
La revista ITECKNE se encuentra registrada bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente, siempre que se reconozca el nombre de los autores y a la Universidad Santo Tomás. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios.
La Revista ITECKNE no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. Sin embargo esta facultada para editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir el artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.