Euclidian, FDA and SVM weak classifiers fusion using a posteriori confidence classification (APCC)

Authors

  • Edwin Alberto Silva-Cruz Universidad Industrial de Santander
  • Carlos Humberto Esparza-Franco Universidad Industrial de Santander

DOI:

https://doi.org/10.15332/iteckne.v12i2.1238

Keywords:

Classification systems, multiclass problems, weak features, weak classification, APCC.

Abstract

The 2-class and multiclass classification systems have important issues when there is overlapping between the samples, insufficient representation of the classes or asymmetrical data representation. Sophisticated classification systems such as SVM and SVM-RBF may have generalization problems, so it is complicated to obtain successful classifiers. In this work it is shown how the use of classification fusion of simpler classifiers may improve the overall classification by using APCC (A Posteriori Confidence Classification). APCC defines the individual reliability of each parameter and each classification system per parameter, and produces a posteriori weight to each classifier according to its output. The developed protocols were tested using simulated data and real data from TPOEM (Temporal Patterns of Oriented Edge Magnitudes) and VPOEM (Volumetric Patterns of Oriented Edge Magnitudes) for facial expression representation. In both cases the use of APCC and classifier fusion allowed to improve the classification accuracy.

Downloads

Download data is not yet available.

Author Biographies

Edwin Alberto Silva-Cruz, Universidad Industrial de Santander

Ph. D (c) Ingeniería Electrónica, Universidad Industrial de Santander, Bucaramanga, Colombia.

Carlos Humberto Esparza-Franco, Universidad Industrial de Santander

M. Sc. (c) Ingeniería Electrónica, Universidad Industrial de Santander, Bucaramanga, Colombia.

References

H. Xiong, J. Wu, and L. Liu, “Classification with Class Overlapping: A Systematic Study,” in The 2010 International Conference on E-Business Intelligence, 2010, pp. 491-497.

W. Tang, K. Z. Mao, L. O. Mak, and H. W. Ng, “Classification for overlapping classes using optimized overlapping region detection and soft decision,” in Information Fusion (FUSION), 2010 13th Conference on, 2010, pp. 1-8.

M. Denil and T. Trappenberg, “Overlap versus Imbalance,” in Advances in Artificial Intelligence, 2010, pp. 220-231.

V. García, R. A. Mollineda, and J. S. Sánchez, “On the k-NN performance in a challenging scenario of imbalance and overlapping,” Pattern Anal. Appl., vol. 11, no. 3-4, pp. 269-280, Sep. 2007.

R. C. Prati, G. E. A. P. A. Batista, and M. C. Monard, “Class imbalances versus class overlapping: an analysis of a learning system behavior,” in MICAI 2004: Advances in Artificial Intelligence, 2004, pp. 312-321.

Y. Tang and J. Gao, “Improved classification for problem involving overlapping patterns,” IEICE Trans. Inf. Syst., vol. 90, no. 11, pp. 1787-1795, 2007.

G. E. Batista, R. C. Prati, and M. C. Monard, “Balancing strategies and class overlapping,” in Advances in Intelligent Data Analysis VI, 2005, pp. 24-35.

G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM SIGKDD Explor. Newsl., vol. 6, no. 1, p. 20, Jun. 2004.

Y. Han, F. Wu, J. Jia, Y. Zhuang, and B. Yu, “Multi-Task Sparse Discriminant Analysis (MtSDA) with Overlapping Categories,” in Proceedings of the Twenty-Fourth AAAI Conference on Artificial Inteligence (AAAI-10), 2010, pp. 469-474.

S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared subspace for multi-label classification,” in Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08, 2008, pp. 381-389.

T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-WIDE: A Real-World Web Image Database from National University of Singapore,” in Proceedings of the ACM International Conference on Image and Video Retrieval, 2009, p. 48.

M. Wang, L. Yang, and X. Hua, “MSRA-MM: Bridging Research and Industrial Societies for Multimedia Information Retrieval,” Microsoft Res. Asia, Tech. Rep, pp. 1-14, 2009.

S.-J. Kim, A. Magnani, and S. P. Boyd, “Robust fisher discriminant analysis,” in Advances in Neural Information Processing System, 2005, vol. 1, pp. 659-666.

S. Abe, Support vector machines for pattern classification. Springer, 2010.

C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998.

G. C. Cawley and N. L. Talbot, “On over-fitting in model selection and subsequent selection bias in performance evaluation,” J. Mach. Learn. Res., vol. 11, no. 1, pp. 2079-2107, 2010.

N.-S. Vu and A. Caplier, “Enhanced patterns of oriented edge magnitudes for face recognition and image matching,” Image Process. IEEE Trans., vol. 21, no. 3, pp. 1352-1365, 2012.

E. Silva, C. Esparza, and Y. Mejía, “POEM-based Facial Expression Recognition, a New Approach,” in Image, Signal Processing, and Artificial Vision (STSIVA), 2012 XVII Symposium of, 2012, pp. 162-167.

Published

2015-11-06

How to Cite

Silva-Cruz, E. A., & Esparza-Franco, C. H. (2015). Euclidian, FDA and SVM weak classifiers fusion using a posteriori confidence classification (APCC). ITECKNE, 12(2), 119–130. https://doi.org/10.15332/iteckne.v12i2.1238

Issue

Section

Research and Innovation Articles