Characterization of communication channels in terms of traffic and network architecture: a review

  • Leonardo Serna-Guarín M. Sc.(c). Investigador Laboratorio MIRP. Instituto Tecnológico Metropolitano. Medellín
  • Edilson Delgado-Trejos Ph. D. Investigador Laboratorio MIRP Instituto Tecnológico Metropolitano. Medellín
Keywords: Channels of communication, traffic, network architecture, remote monitoring and control

Abstract

Software tools face accessibility and availability limitations in monitoring and industrial control processes when communications are affected by long distances. Likewise, real-time answers and stability are also limited by the traffic conditions in LAN network. Ethernet networks are widely-used in industrial communications due to high performance in multiswitch configuration. However, they are not the most appropriate solution for real-time applications, given the difficulty in measuring response times in data transmission, and even more so when the network topologies are different and traffic levels are permanently varying. This paper presents a review of the characterization of communication channels in terms of traffic and network architecture,  identifying  unexplored  areas  and  promoting  new alternatives that may be easily adopted by the industrial sector.  In  conclusion,  a  technique  integrated  by  architecture  and  traffic  characteristics  in  network  analysis may  performance  in  heterogeneous  systems  for  industrial applications via web.

Downloads

Download data is not yet available.

References

[1] J. Kurose y K. Ross, “Redes de computadoras,” Pearson Educación, 5 ed. ,2010.

[2] D. W. Pritty, J. R. Malone, D. N. Smeed, S. K. Banerjee, y N. L. Lawrie, “A real-time upgrade for ethernet based factory networking,” in Proceedings of the 1995 IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1631 -1637, 1995.

[3] P. Pedreiras, P. Gai, L. Almeida, y G. C. Buttazzo, “FTTEthernet: a flexible real-time communication protocol that supports dynamic QoS management on Ethernet-based systems,” IEEE Transactions on Industrial Informatics, vol. 1, no. 3, pp. 162 - 172, Aug. 2005.

[4] K. C. Lee y S. Lee, “Performance evaluation of switched ethernet for real-time industrial communications,” in Computer Standards & Interfaces, vol. 24, no. 5, pp. 411-423, Nov. 2002.

[5] J. Wang y S. Keshav, “Efficient and accurate ethernet simulation,” in Conference on Local Computer Networks LCN, pp. 182 -191, 1999.

[6] L. Tao, T. Jiang, y Z. Xiangli, “A solution for ethernetbased real-time communication network of distributed numerical control system,” in Technology and Innovation Conference (ITIC 2009) pp. 1 -6, 2009.

[7] M. Felser, “Ethernet TCP/IP in automation: a short introduction to real-time requirements”, in 8th IEEE International Conference on Emerging Technologies and Factory Automation, Proceedings, vol. 2, pp. 501 -504, 2001.

[8] P. Ferrari, A. Flammini, D. Marioli, A. Taroni, y F. Venturini, “Experimental analysis to estimate jitter in PROFINET IO Class 1 networks,” in IEEE Conference on Emerging Technologies and Factory Automation, ETFA, pp. 429 -432, 2006.

[9] Y. Chen, T. Farley, y N. Ye, “QoS requirements of network applications on the Internet,” Information Knowledge Systems Management, vol. 4, no. 1, pp. 55–76, 2004.

[10] M. Tan y Z. Wei, “A real-time scheduling algorithm for industrial communication,” in IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS, vol. 1, pp. 331 -335, 2009.

[11] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo, y F. Rusina, “A Real-Time Service-Oriented Architecture for Industrial Automation,” in IEEE Transactions on Industrial Informatics, vol. 5, no. 3, pp. 267 -277, Aug. 2009.

[12] Y. Cetinceviz y R. Bayindir, “Design and implementation of an Internet based effective controlling and monitoring system with wireless fieldbus communications technologies for process automation— an experimental study,” ISA Transactions, vol. 5, no. 3, pp. 461-470, May. 2012.

[13] X. Li, J. Scharbarg, y C. Fraboul, “Worst-case delay analysis on a real-time heterogeneous network,” in 2012 7th IEEE International Symposium on Industrial Embedded Systems (SIES), pp. 11 -20, 2012,.

[14] K. Elmeleegy y A. L. Cox, “EtherProxy: Scaling Ethernet By Suppressing Broadcast Traffic,” in IEEE INFOCOM, pp. 1584 -1592, 2009.

[15] J. Imtiaz, J. Jasperneite, y L. Han, “A performance study of Ethernet Audio Video Bridging (AVB) for Industrial real-time communication,” in IEEE Conference on Emerging Technologies Factory Automation, ETFA, pp. 1 -8, 2009.

[16] J. S. Beasley, “Networking,” Pearson Education, 2nd Edition., Michigan, 2008.

[17] J.-D. Decotignie, “Ethernet-based real-time and industrial communications,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1102 -1117, Jun. 2005.

[18] A. Yiming y T. Eisaka, “Industrial hard real-time traffic protocol based on switched Ethernet,” in IEEE International Symposium on Communications and Information Technology, 2005. ISCIT, vol. 1, pp. 205 – 208, 2005.

[19] Y. Zou, T. Wang, H. Wei, y M. Liu, “A hard real-time robot communication approach based on preemptive CSMA/CA,” in 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1875 -1880, 2011.

[20] P. Plesowicz y M. Metzger, “Experimental testing of TCP/IP/ethernet communication for automatic control,” in Testing of Software and Communicating Systems, A. Petrenko, M. Veanes, J. Tretmans, y W. Grieskamp, Eds. Springer Berlin Heidelberg, pp. 260-275, 2007.

[21] D. L. Mills, “Internet time synchronization: the network time protocol,” in IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482 -1493, Oct. 1991.

[22] L. Thrybom y G. Prytz, “QoS in switched industrial ethernet,” in IEEE Conference on Emerging Technologies Factory Automation, ETFA, pp. 1 -8, 2009.

[23] C. Rojas y P. Morell, “Guidelines for industrial ethernet infrastructure implementation: a control engineer’s guide,” in Cement Industry Technical Conference, IEEE-IAS/PCA 52nd, pp. 1 -18, 2010,

[24] G. Wang, J. Liu, H. Yao, y J. Ning, “Congestion control for industrial ethernet using network calculus,” in International Symposium on Intelligent Information Technology Application Workshops, IITAW, pp. 193 -196, 2008.

[25] T. Skeie, S. Johannessen, y O. Holmeide, “Timeliness of real-time IP communication in switched industrial Ethernet networks,” in IEEE Transactions on Industrial Informatics, vol. 2, no. 1, pp. 25 - 39, Feb. 2006.

[26] J. J. Scarlett y R. W. Brennan, “Evaluating a new communication protocol for real-time distributed control,” Robotics and Computer-Integrated Manufacturing, vol. 27, no. 3, pp. 627–635, 2011.

[27] K. Schmidt y E. G. Schmidt, “A longest-path problem for evaluating the worst-case packet delay of switched ethernet,” in 2010 International Symposium on Industrial Embedded Systems (SIES), pp. 205 -208, 2010.

[28] J. Tretmans, “Test generation with inputs, outputs and repetitive quiescence,” in Software---Concepts and Tools, 1996. [Online]. Available: http://doc.utwente.nl/65463/.

[29] A. Barczyk, D. Bortolotti, A. Carbone, J. P. Dufey, D. Galli, y B. Gaidioz, “High rate packets transmission on ethernet LAN using commodity hardware,” in Real Time Conference, 14th IEEE-NPSS, p. 6, 2005.

[30] P. Li, W. Zhou, y Y. Wang, “Getting the real-time precise round-trip time for stepping stone detection,” in 2010 4th International Conference on Network and System Security (NSS), pp. 377 -382, 2010.

[31] F. Ping, C. McConnell, y J.-H. Hwang, “A retrospective approach for accurate network latency prediction,” in Proceedings of 19th International Conference on Computer Communications and Networks (ICCCN), pp. 1 -6, 2010.

[32] A. S. Tanenbaum, “Redes de computadoras,” Pearson Educación, 2003.

[33] S. Avallone, A. Pescapé, S. Pietro, y G. Ventre, “Analisys and performance evaluation of the real time traffic on premium IP (PIP) Network,” .

[34] P. Ferrari, A. Flammini, D. Marioli, y A. Taroni, “A distributed instrument for performance analysis of real-time ethernet networks,” in IEEE Transactions on Industrial Informatics, vol. 4, no. 1, pp. 16 -25, Feb. 2008.

[35] A. Depari, P. Ferrari, A. Flammini, D. Marioli, y A. Taroni, “A new instrument for real-time ethernet performance measurement,” in IEEE Transactions on Instrumentation and Measurement, vol. 57, n.o 1, pp. 121 -127, Jan. 2008.

[36] P. Brooks, “Ethernet/IP-industrial protocol”, in 8th IEEE International Conference on Emerging Technologies and Factory Automation, Proceedings, vol. 2, pp. 505 -514, 2001.

[37] B. Addad y S. Amari, “Delay evaluation and compensation in ethernet-networked control systems,” presented at the 16th International Conference on Real-Time and Network Systems (RTNS), 2008.

[38] N. Krommenacker, E. Rondeau, y N. Divoux, “Study of algorithms to define the cabling plan of switched Ethernet for real-time applications,” in 8th IEEE International Conference on Emerging Technologies and Factory Automation, Proceeding, vol.1, pp. 223 -230, 2001.

[39] G. Fiche y G. Hébuterne, “Communicating Systems & Networks: Traffic & Performance,” Kogan Page Science, 2004.

[40] N. Krommenacker, J. P. Georges, E. Rondeau, y T. Divoux, “Designing, modelling and evaluating switched Ethernet networks in factory communication systems,” RTLIA, p. 55, 2002.

[41] S. H. Yang y J. L. Alty, “Development of a distributed simulator for control experiments through the internet,” Future Generation Computer Systems, vol. 18, no. 5, pp. 595-611, Apr. 2002.

[42] H. Hashim y Z. A. Haron, “A study on industrial communication networking: ethernet based implementation,” in International Conference on Intelligent and Advanced Systems, ICIAS, pp. 1111 -1114, 2007.

[43] S. Vitturi, “On the use of ethernet at low level of factory communication systems,” in Computer Standards & Interfaces, vol. 23, no. 4, pp. 267-277, sep. 2001.

[44] R. H. Khan y J. Y. Khan, «A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network», Computer Networks, vol. 57, no. 3, pp. 825-845, Feb. 2013.

[45] S.-L. Jämsä-Jounela, “Future trends in process automation,” in Annual Reviews in Control, vol. 31, no. 2, pp. 211-220, 2007.

[46] A. Flammini, P. Ferrari, E. Sisinni, D. Marioli, y A. Taroni, “Sensor interfaces: from field-bus to ethernet and internet,” in Sensors and Actuators A: Physical, vol. 101, no. 1-2, pp. 194-202, Sep. 2002.

[47] A. B. Lugli, M. M. Dias Santos, y L. R. Horta Rodrigues Franco, “A computer tool to support in design of industrial ethernet,” ISA Transactions, vol. 48, no. 2, pp. 228-236, abr. 2009.

[48] Z. Machacek y V. Srovnal, “Communication network model for industrial control,” in Roedunet International Conference (RoEduNet), 9th, pp. 293 -298, 2010.

[49] J.-P. Georges, N. Krommenacker, T. Divoux, y E. Rondeau, “A design process of switched ethernet architectures according to real-time application constraints,” in Engineering Applications of Artificial Intelligence, vol. 19, no. 3, pp. 335-344, Apr. 2006.

[50] L. Carro-Calvo, S. Salcedo-Sanz, J. A. Portilla-Figueras, y E. G. Ortiz-García, “A genetic algorithm with switch-device encoding for optimal partition of switched industrial Ethernet networks,” in Journal of Network and Computer Applications, vol. 33, no. 4, pp. 375-382, Jul. 2010.

[51] R. Viegas, R. A. M. Valentim, D. G. Texeira, y L. F. Guedes, “Analysis of protocols to ethernet automation networks,” in SICE-ICASE, 2006. International Joint Conference, pp. 4981 -4985, 2006.

[52] M. R. Nusekabel y K. J. Christensen, “Using tabu search to find optimal switched LAN configurations,” in IEEE Southeastcon, Proceedings, 1998, pp. 298 -301, 1998.

[53] R. A. de M. Valentim, A. H. F. Morais, G. B. Brandao, y A. M. G. Guerreiro, “A performance analysis of the ethernet nets for applications in real-time: IEEE 802.3 and 802.3 1 Q,” in 6th IEEE International Conference on Industrial Informatics, INDIN, pp. 956 -961, 2008.

[54] S. Vitturi y D. Miorandi, “Hybrid ethernet/IEEE 802.11 networks for real-time industrial communications,” in 10th IEEE Conference on Emerging Technologies and Factory Automation, ETFA, vol. 2, pp. 7-449, 2005.

[55] S.-K. Kweon y K. G. Shin, “Achieving real-time communication over Ethernet with adaptive traffic smoothing,” in Sixth IEEE Real-Time Technology and Applications Symposium, RTAS Proceedings, pp. 90 -100, 2000.

[56] J. Chen, Z. Wang, y Y. Sun, “Real-time capability analysis for switch industrial Ethernet traffic priority-based,” in Proceedings of the 2002 International Conference on Control Applications, vol. 1, pp. 525 – 529, 2002..

[57] R. Santos, R. Marau, A. Vieira, P. Pedreiras, A. Oliveira, y L. Almeida, “A synthesizable Ethernet switch with enhanced real-time features,” in 35th Annual Conference of IEEE Industrial Electronics, IECON ,, pp. 2817 -2824, 2009.

[58] T. Shon y J. Moon, “A hybrid machine learning approach to network anomaly detection,” in Information Sciences, vol. 177, no. 18, pp. 3799-3821, Sep. 2007.

[59] L. Xiaohu, H. Yiping, y L. Hailang, “Based on embedded serial device remote monitoring system,” in International Conference on Intelligent Computing and Integrated Systems (ICISS), pp. 129 -131, 2010..

[60] J. Jasperneite, J. Imtiaz, M. Schumacher, y K. Weber, “A Proposal for a Generic Real-Time Ethernet System,” in IEEE Transactions on Industrial Informatics, vol. 5, no. 2, pp. 75 -85, May, 2009.

[61] S. Kubler, E. Rondeau, y J.-P. Georges, “Dependability of switched network architectures for Networked Control Systems,” in IEEE International Conference on Mechatronics (ICM), pp. 761 -766, 2011.

[62] N. Kalappa, K. Acton, M. Antolovic, S. Mantri, J. Parrott, J. Luntz, J. Moyne, y D. Tilbury, “c in IEEE Conference on Emerging Technologies and Factory Automation, ETFA ,pp. 1061 -1064, 2006.

[63] S. Paul, J. Pan, y R. Jain, “Architectures for the future networks and the next generation Internet: A survey,” in Computer Communications, vol. 34, no. 1, pp. 2–42, 2011.

[64] S. Yang, X. Chen, y J. Alty, “Design issues and implementation of internet-based process control systems,” in Control Engineering Practice, vol. 11, no. 6, pp. 709- 720, Jun. 2003.

[65] E. J. Byres, “Designing secure networks for process control”, in Pulp and Paper, Industry Technical Conference Record of 1999 Annual, pp. 63 -67, 1999.

[66] L. Han, J. Jasperneite, y T. Werner, “DIVAN: A network calculator for the off-line performance analysis of Virtual Automation Networks,” in 2010 8th IEEE International Workshop on Factory Communication Systems (WFCS), pp. 293 -302, 2010.

[67] M. Metzger, “Virtual controllers improve internet-based experiments on semi industrial pilot plants,” pp. 2282-2282, 2005.

[68] M. Metzger y G. Polaków, “Cooperative internet-based experimentation on semi-industrial pilot plants,” in Cooperative Design, Visualization, and Engineering, Y. Luo, Ed. Springer Berlin Heidelberg, pp. 265-272, 2008.

[69] C. J. Hong, L. K. Luong, y S. Y. Chark, “Building automation through web interface,” in 2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT), pp. 299 -304, 2012.

[70] W. Hu, G.-P. Liu, y D. Rees, “Networked Predictive Control Over the Internet Using Round-Trip Delay Measurement,” in IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 10, pp. 2231 -2241, Oct. 2008.

[71] R.-M. Chen, “Reducing network and computation complexities in neural based real-time scheduling scheme,” in Applied Mathematics and Computation, vol. 217, no. 13, pp. 6379-6389, Mar. 2011.
Published
2014-09-17
How to Cite
Serna-Guarín, L., & Delgado-Trejos, E. (2014). Characterization of communication channels in terms of traffic and network architecture: a review. ITECKNE, 11(1), 99-107. https://doi.org/https://doi.org/10.15332/iteckne.v11i1.532
Section
Literature Reviews