Experimental study to establishing the insertion torque on dental implant

  • Clara Isabel López-Gualdrón Ph. D.(c). Grupo de Investigación INTERFAZ. Universidad Industrial de Santander. Bucaramanga
  • Carlos Fernando Galeano-Arrieta Cirujano oral y maxilofacial Universidad Industrial de Santander Bucaramanga
  • Julio Cesar Pinillos M.Sc. Grupo de Investigación INTERFAZ. Universidad Industrial de Santander. Bucaramanga
  • Juan Carlos Moreno M.Sc. Grupo de Investigación INTERFAZ. Universidad Industrial de Santander. Bucaramanga
Keywords: Biomechanical and Virtual Simulation, Implant, Finite element models, Torque

Abstract

The  main  purpose  of  this  research  was  the development of a study to determine the values of insertion torque recommended to reduce the likelihood of generating pathological overload of mandible molar region due to insertion torque applied to adjust the dental implant. Ti6Al4V dental implants were manufactured to be inserted  into  bone  tissue  specimens  of  human  cadaver jaw and similar densities of bone substitute specimens Sawbone ® normalized like bone density D2 type. Then were  measured  the  insertion  torque  data  recording  to  adjust the implant at samples. Data from the test were used in simulations based on the finite element method. Through the elastic strain criteria, it was known the strain values less than 0,4% of the elastic strain at the bone implant interface. Based on outputs case study, the values of insertion torque to be applied to insert implants surgery are recommended.

Downloads

Download data is not yet available.

References

[1] R. C. W. Wong, H. Tideman, M. a W. Merkx, J. Jansen, S. M. Goh, and K. Liao, “Review of biomechanical models used in studying the biomechanics of reconstructed mandibles,” in Int. J. Oral Maxillofac. Surg, vol. 40, no. 4, pp. 393–400, Apr. 2011.

[2] S. Faegh and S. Müftü, “Load transfer along the bone-dental implant interface,” J. Biomech, vol. 43, no. 9, pp. 1761–70, Jun. 2010.

[3] S. Gomes and A. Shimano, “Behavior of cortical screws submitted to manual,”en Acta ortop bras, vol. 16, no. 2, pp. 81–84, 2008.

[4] O. Dilek, E. Tezulas, and M. Dincel, “Required minimum primary stability and torque values for immediate loading of mini dental implants: an experimental study in nonviable bovine femoral bone,” in Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod, vol. 105, no. 2, pp. e20–7, Feb. 2008.

[5] M. C. Cehreli, M. Akkocaoglu, A. Comert, I. Tekdemir, and K. Akca, “Bone strains around apically free versus grafted implants in the posterior maxilla of human cadavers,” in Med. Biol. Eng. Comput, vol. 45, no. 4, pp. 395–402, Apr. 2007.

[6] M. Cehreli, M. Akkocaoglu, and K. Akca, “Numerical simulation of in vivo intraosseous torsional failure of a hollow-screw oral implant.,” in Head Face Med, vol. 2, p. 36, Jan. 2006.

[7] J. Cano-Sánchez, J. Campo-Trapero, J. J. Sánchez-Gutiérrez, and a. Bascones-Martínez, “Mecanobiología de los huesos maxilares: II. Remodelación ósea,” Av. Odontoestomatol, vol. 24, no. 2, pp. 177–186, Apr. 2008.

[8] C. E. Misch, “Densidad ósea: factor determinante en el plan de tratamiento,” en implantología contemporánea, Third ed, Canada: Mosby Elsevier, 2007, pp. 133–1120.

[9] C. S. Jorge, “Departamento de Medicina y Cirugía Bucofacial,” en Universidad Complutense de Madrid, 2003.

[10] J. Martinez-González, J. Cano Sánchez, J. Campo Trapero, M. Martinez-Gonzalez, and F. García-Sabán, “Diseño de los implantes dentales : estado actual,” en Av. Periodoncia, vol.14, no. 3, pp. 129–136, 2002.

[11] O. C. Zienkiewicz and F. Emeritus, “The Basis,” in The Finite Element Method, Fifth, vol. 1, Berkeley California: Butterworth Heinemann, 2000, p. 689.

[12] B. Simşek, E. Erkmen, D. Yilmaz, and A. Eser, “Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: a 3D finite element analysis,” in Med. Eng. Phys, vol. 28, no. 3, pp. 199–213, Apr. 2006.

[13] M. C. Cehreli, D. Karasoy, K. Akca, and S. Eckert, “Meta-analysis of methods used to,” in Int J Oral Maxillofac. Implant, vol. 24, pp. 1015–1032, 2009.

[14] F. J. Gil, A. Crespo, C. Aparicio, J. Peña, M. Marsal, and J. A. Planell, “Aflojamiento de tornillos de conexión implante dental-prótesis mediante simulación de cargas cíclicas masticatorias,” in An. Mecánica la Fract, vol. 20, no. 1, pp. 491–494, 2003.

[15] M. J. P. González, “Análisis tensodimensional de un tornillo,” Universidad Carlos III de Madrid Escuela Politécnica Superior, 2010.

[16] ASTM International, “Standard specification and test methods for metallic medical bone screws,” vol. 1, C. United State, pp. 1–20, 2009.

[17] M. Niinomi, “Mechanical properties of biomedical titanium alloys,” in Mater. Sci. Eng. A, vol. 243, no. 1–2, pp. 231–236, Mar. 1998.

[18] M. Long and H. J. Rack, “Titanium alloys in total joint replacement--a materials science perspective,” in Biomaterials, vol. 19, no. 18, pp. 1621–39, Sep. 1998.

[19] F. Technique, R. Metals, T. Alloys, Q. C. Program, and T. Alloys, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI ( Extra Low Interstitial ) Alloy for Surgical Implant Applications , UNS, no. C, pp. 1–5. United State, 2009.

[20] “Titanium Ti-6Al-4V (Grade 5), Annealed.” Material Property Data.

[21] ASTM International, “Standard specification for rigid polyurethane foam for use as a standard material for testing orthopaedic,” Devices and Instruments 1, vol. 08, no.2, p.6. United States, 2012.

[22] I. Turkyilmaz and E. a McGlumphy, “Influence of bone density on implant stability parameters and implant success: a retrospective clinical study,” BMC Oral Health, vol. 8, p. 32, Jan. 2008.

[23] H. Rotaru, H. Stan, I. S. Florian, R. Schumacher, Y.-T. Park, S.-G. Kim, H. Chezan, N. Balc, and M. Baciut, “Cranioplasty with custom-made implants: analyzing the cases of 10 patients,” J. Oral Maxillofac. Surg, vol. 70, no. 2, pp. e169–76, Feb. 2012.

[24] K. Kupczik, “Virtual biomechanics : basic concepts and technical aspects of fi nite element analysis in vertebrate morphology,” in J. Anthropol. Sci. Sci, vol. 86, pp. 193–198, 2008.

[25] C.-L. Lin, J.-C. Wang, and Y.-C. Kuo, “Numerical simulation on the biomechanical interactions of tooth/implant-supported system under various occlusal forces with rigid/non-rigid connections,” in J. Biomech, vol. 39, no. 3, pp. 453–63, Jan. 2006.

[26] C. I. Lopez, J. F. Archila, and K. M. Cantero, “Aplicación de un método no destructivo para la obtención propiedades físicas de tejido óseo basado técnica imanenológica y herramientas software cad Application of a non destructive method for developing physical properties of bone,” en Prospectiva, vol. 10, no. 2, pp. 22–30, 2012.

[27] C. Lin, Y.-C. Kuo, and T.-S. Lin, “Effects of dental implant length and bone quality on biomechanical responses in bone around implants : a 3-D non-linear finite element analysis,” in Biomed. Eng. Appl. Basis Commun, vol. 17, no. 1, pp. 44–49, 2005.

[28] Pacific Research laboratory, “Sawbone Worldwide,” in Solid Rigid Polyurethane Foam, 2014

[Online]. Available: http://www.sawbones.com/products/bio/testblocks/solidfoam.aspx.

[29] A. Beer, A. Gahleitner, A. Holm, M. Tschabitscher, and P. Homolka, “Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible,” in Cli. Oral Impl, vol. 14, pp. 616–620, 2003.

[30] M. Goswami, M. Kumar, A. Vats, and B. A. S. Bansal, “Evaluation of dental implant insertion torque using a manual ratchet,” in Med. J. Armed Forces India, vol. in press, pp. 1–6, 2013.
Published
2014-09-17
How to Cite
López-Gualdrón, C., Galeano-Arrieta, C., Pinillos, J., & Moreno, J. (2014). Experimental study to establishing the insertion torque on dental implant. ITECKNE, 11(1), 17-26. https://doi.org/https://doi.org/10.15332/iteckne.v11i1.514
Section
Research and Innovation Articles