Methylene blue photodegradation by sensitized TiO2 thin films with pigments isolated from cyanobacterial biomass

Keywords: Methylene blue, Heterogeneous photocatalysis, Sensitization, Titanium dioxide

Abstract

The textile industries generate a great diversity of pollutant waste, among these; dyes most of them non-biodegradable and recalcitrant are hard to treat by conventional methods, so it is necessary to implement alternative treatment technologies for their degradation. Through heterogeneous photocatalysis, a semiconductor such as titanium dioxide (TiO2) can oxidate different organic compounds that are difficult to treat by conventional methods. A critical drawback of using TiO2 semiconductors is the requirement of UV light; however, the semiconductor sensitization with chemical substances from synthetic or natural origin to extend its activity in the visible region is a typical alternative to solve this issue. This work evaluated the effect of separate pigments (Chlorophyll a and phycocyanin C) obtained from cyanobacteria biomass isolated from the Malambo Swamp in the Department of Atlántico-Colombia on the photocatalytic properties of titanium dioxide. TiO2 films were sensitized with each of the extracts and the band gap energy was obtaining by diffuse reflectance spectroscopy. Finally, the laboratory-scale tests were carried out to evaluate the photocatalytic degradation of the methylene blue dye.  Chlorophyll and phycocyanin were identified as sensitizers present in the methanolic extract of cyanobacterial biomass. Additionally, TiO2/Chlorophyll films had a higher percentage of photodegradation than the TiO2/Phycocyanin films. Finally, the results showed the natural dyes obtained from the biomass extract are suitable to improve the photocatalytic response of TiO2 under visible irradiation.

Downloads

Download data is not yet available.

Author Biographies

Amado Enrique Arcón Osorio, Universidad del Atlántico

Estudiante, Maestría en Ciencias Ambientales, Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia.

William Andrés Vallejo Lozada, Universidad del Atlántico

Doctor en Ciencias Químicas. Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia.

Carlos Enrique Diaz Uribe, Universidad del Atlántico

Doctor en Química. Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia.

References

[1] P.K. Jaseela, J. Garvasis and A. Joseph, “Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2) – poly vinyl alcohol (PVA) nanocomposite”, Journal of Molecular Liquids, vol. 286, pp. 110908, 2019, DOI:https://doi.org/10.1016/j.molliq.2019.110908.

[2] A. Michniewicz, “Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor”, Dyes and Pigments, vol. 77, pp. 295–302, 2018, DOI: https://doi.org/10.1016/j.dyepig.2007.05.015

[3] Z. Wang, M. Gao, X. Li, J. Ning, Z. Zhou and G. Li, “Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins”, Materials science & engineering. C, Materials for biological applications, vol. 108, pp. 110196, 2020, DOI: https://doi.org/10.1016/j.msec.2019.110196

[4] H. Xue, A. Thaivalappil and K. Cao, “The Potentials of Methylene Blue as an Anti-Aging Drug.”, Cells, vol. 10(12), pp. 3379., DOI: https://doi.org/10.3390/cells10123379

[5] A. Krishna, B. Govindarajan, S.P. Shukla, K. Kumar and S. Bharti, V. “Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae”, Environmental toxicology and pharmacology, vol. 82, pp. 103552, 2021, DOI: https://doi.org/10.1016/j.etap.2020.103552

[6] H. Safardoust-Hojaghan and M. Salavati-Niasari, “Degradation of methylene blue as a pollutant with N-doped graphene quantum dot / titanium dioxide nanocomposite”, Journal of Cleaner Production, vol. 148, pp. 31-36, 2017, DOI:https://doi.org/10.1016/j.jclepro.2017.01.169

[7] Y. Zhang, J. Liu, X. Du and W. Shao, “Preparation of reusable glass hollow fi ber membranes and methylene blue adsorption”, Journal of the European Ceramic Society, vo. 39 (15), pp. 4891-4900, 2019, DOI:https://doi.org/10.1016/j.jeurceramsoc.2019.06.038

[8] M.H de Matos-Rodrigues, P.A. Rodrigues de Sousa, K. Borges, L. Melo-Coelho,R. de Fatima, M. Daldin, F. Vilella, M. Maribondo and M. Godinho, “Enhanced degradation of the antibiotic sulfamethoxazole by heterogeneous photocatalysis using Ce0,8Gd0,2O2-δ/TiO2 particles”, Journal of Alloys and Compounds, vol. 808, pp. 151711, 2019, DOI:10.1016/j.jallcom.2019.151711.

[9] P. Kokkinos, D. Venieri and D. Mantzavinos, “Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review”, Food and environmental virology, vol. 13(3), pp. 283–302, 2021, DOI:https://doi.org/10.1007/s12560-021-09481-1

[10] L. Xu, W. Li, X. Ye, E. Zhang, C. Wang and J. Yang, “Reaction mechanism of chloramphenicol with hydroxyl radicals for advanced oxidation processes using DFT calculations”, Journal of molecular modeling, vol. 26(12), pp. 352, 2020. DOI:https://doi.org/10.1007/s00894-020-04616-w

[11] F.E Titchou, H. Zazou, H. Afanga, J. El Gaayda, R. Ait Akbour, P.V. Nidheesh and M. Hamdani, “Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes”, Chemical Engineering and Processing - Process Intensification, vol. 169, pp. 108631, 2021, DOI: https://doi.org/10.1016/j.cep.2021.108631

[12] E. Araujo-López, L. Alcala, N. Seriani and J.A. Montoya “TiO2 anatase's bulk and (001) surface, structural and electronic properties: A DFT study on the importance of Hubbard and van der Waals contributions”, Surface Science, vol. 653, pp. 187-196, 2016, https://doi.org/10.1016/j.susc.2016.07.003

[13] B. Pava-Gómez, X. Vargas-Ramírez, C. Díaz-Uribe, H. Romero, F. Duran, “Evaluation of copper-doped TiO2 film supported on glass and LDPE with the design of a pilot-scale solar photoreactor”, Solar Energy, vol. 220, pp. 695-705, 2021, DOI:https://doi.org/10.1016/j.solener.2021.03.071.

[14] N.C. Diamantopoulos, A. Barnasas, C.S. Garoufalis, D.I. Anyfantis, N. Bouropoulos, P. Poulopoulos and S. Baskoutas, S. (2020). “Band Gap Measurements of Nano-Meter Sized Rutile Thin Films”, Nanomaterials, vol. 10(12), pp. 2379, 2020, DOI:https://doi.org/10.3390/nano10122379

[15] J. Diaz-Angulo, A. Arce-Sarria, M. Mueses, A. Hernández-Ramírez, and F. Machuca-Martínez, “Analysis of two dye-sensitized methods for improving the sunlight absorption of TiO2 using CPC photoreactor at pilot scale”, Materials Science in Semiconductor Processing, vol, 103, pp. 104640, 2019, DOI:https://doi.org/10.1016/j.mssp.2019.104640

[16] C. Diaz-Uribe, W. Vallejo, E. Romero, M. Villareala, P. Minela, N. Hazbun, N. A. Muñoz-Acevedo, E. Schott and X. Zarate, “TiO2 thin films sensitization with natural dyes extracted from Bactris guineensis for photocatalytic applications: Experimental and DFT Study”, Journal of Saudi Chemical Society, vol. 24, pp. 407-416, 2020, DOI:https://10.1016/j.jscs.2020.03.004.

[17] K. Patiño-Camelo, C Diaz-Uribe, E. Gallego-Cartagena, W. Vallejo, V. Martinez, C. Quiñones, E. Schott, “Cyanobacterial Biomass Pigments as Natural Sensitizer for TiO2 Thin Films”, Hindawi, vol. 9, pp. 1-10, 2019, DOI:https://doi.org/https://doi.org/10.1155/2019/7184327

[18] B.D. Viezbicke, S. Patel, B.E. Davis and D.P. Birnie, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system”, Physica Status Solidi (B) Basic Research, vol, 252(8), pp. 1700–1710, 2015, DOI:https://doi.org/10.1002/pssb.201552007

[19] E.L. Simmons, “Relation of the diffuse reflectance remission function to the fundamental optical parameters”, Optica Acta, vol. 19(10), pp. 845–851, 1972, DOI:https://doi.org/10.1080/713818505

[20] A.G. Thomas and K.L. Syres, “Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces”, Chemical Society Reviews, vol. 41(11), pp. 4207–4217., 2012, DOI:https://doi.org/10.1039/c2cs35057b

[21] S. Mahadik, H. Yadav and S. Mahadik, “Surface properties of chlorophyll-a sensitized TiO2 nanorods for dye-sensitized solar cells applications”, Colloid and Interface Science Communications, vol. 46, pp. 100558, 2022, DOI:https://doi.org/10.1016/j.colcom.2021.100558.

[22] A. Kathiravan and R. Renganathan, “Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigmen”, Journal of Colloid and Interface Science, vol. 335(2), pp. 196–202, 2009, DOI:https://doi.org/10.1016/j.jcis.2009.03.076.

[23] Q. Guo, C. Zhou, Z. Ma, and X. Yang, “Fundamentals of TiO2 Photocatalysis : Concepts, Mechanisms, and Challenges”, Advanced Materials, vol. 1901997, pp. 1–26, 2019, DOI:https://doi.org/10.1002/adma.201901997

[24] P. Semalti and S.N. Sharma, “Dye Sensitized Solar Cells (DSSCs) Electrolytes and Natural Photo-Sensitizers: A Review”, Journal of Nanoscience and Nanotechnology, vol. 20(6), pp. 3647–3658, DOI: https://doi.org/10.1166/jnn.2020.17530

[25] C. Diaz-Uribe, M. Daza, F. Martínez, E. Paez-Mozo, C. Guedes, E. Di Mauro”Visible light superoxide radical anion generation by tetra(4-carboxyphenyl)porphyrin/TiO2: EPR characterization”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 215, pp. 172-178, 2010, DOI: 10.1016/j.jphotochem.2010.08.013.

[26] A. Kathiravan, M. Chandramohan, R. Renganathan, and S. Sekar, “Cyanobacterial chlorophyll as a sensitizer for colloidal TiO2”, vol. 71, pp. 1783–1787, 2009, DOI: https://doi.org/10.1016/j.saa.2008.06.031
Published
2022-06-13
How to Cite
Arcón Osorio, A., Vallejo Lozada, W., & Diaz Uribe, C. (2022). Methylene blue photodegradation by sensitized TiO2 thin films with pigments isolated from cyanobacterial biomass. ITECKNE, 19(2), 132-137. https://doi.org/https://doi.org/10.15332/iteckne.v19i2.2836
Section
Research and Innovation Articles