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Abstract: Production of concrete by use of conventional 
materials is unsustainable due to high demand. Henceforth, 
there is need to upscale the use of alternative materials, 
including those from waste streams, in concrete. This 
research aims at developing a suitable predictive model 
of concrete having partial or 100% glass aggregates. 
50 datasets reviewed from 9 sources were adopted and 
artificial neural network (ANN) models were developed 
in GNU Octave. The trial models had 7 input variables and 
1 output variable (compressive strength) and 1 hidden 
layer. The selected model, having 24 nodes in the hidden 
layer and 90.000 iterations, indicated overall root mean 
square error (RMSE), mean absolute errors (MAE), mean 
absolute percentage errors (MAPE) and absolute factor of 
variance (R2) of 2.679 MPa, 1.422 MPa, 6.951% and 0.996 
respectively. The glass fine aggregates between >40% 
and 50% indicated just over 11% average strengths from 
the controls. Generally, RMSE, MAE, MAPE and R2 values 
showed that the selected model had a good accuracy level 
and good generalization, particularly considering that the 
datasets were not from the same experimental program. 
The study recommends research and utilization of glass 
fine aggregates up to 50% by weight, with consideration to 
other influencing factors and also research in cost-effective 
and environmentally friendly additive and assessment on 
waste glass aggregates incorporated concrete.

Keywords: concrete; prediction; aggregates; reviews; 
artificial neural network.

Resumen: La producción de hormigón mediante el uso 
de materiales convencionales es insostenible debido a la 

alta demanda. De ahora en adelante es necesario aumentar 
el uso de materiales alternativos, incluidos los de corrientes 
de desechos, en el hormigón. Esta investigación tiene como 
objetivo desarrollar un modelo predictivo adecuado de 
hormigón con agregados de vidrio parciales o al 100%. Se 
adoptaron 50 conjuntos de datos revisados   de 9 fuentes y 
se desarrollaron modelos de redes neuronales artificiales 
(ANN) en GNU Octave. Los modelos de prueba tenían 7 
variables de entrada y 1 variable de salida (resistencia a 
la compresión) y 1 capa oculta. El modelo seleccionado, 
que tiene 24 nodos en la capa oculta y 90.000 iteraciones, 
indicó el error cuadrático medio general (RMSE), los errores 
medios absolutos (MAE), los errores porcentuales absolutos 
medios (MAPE) y el factor de varianza absoluto (R2) de 
2.679 MPa., 1,422 MPa, 6,951% y 0,996, respectivamente. 
Los agregados finos de vidrio entre> 40% y 50% indicaron 
un poco más del 11% de resistencias promedio de los 
controles. En general, los valores de RMSE, MAE, MAPE y R2 
mostraron que el modelo seleccionado tenía un buen nivel 
de precisión y una buena generalización, particularmente 
considerando que los conjuntos de datos no eran del 
mismo programa experimental. El estudio recomienda la 
investigación y la utilización de agregados finos de vidrio 
hasta un 50% en peso, teniendo en cuenta otros factores de 
influencia y también la investigación de aditivos rentables 
y respetuosas con el medio ambiente y evaluaciones 
sobre los agregados de vidrio de desecho incorporados 
al hormigón.

Palabras clave: concreto; predicción; agregados; 
revisiones; red neuronal artificial.
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1. Introduction

This research is on predictive modeling of compressive 
strengths for concrete with partial or 100% glass aggregates. 
This aggregate includes fine, coarse or both and is based on 

weight. According Żurek et al. [1], calculations indicated that 
GNU Octave was effective when used to determine the ex-
pected fitness time, dependent on the reliability function ad-
opted for the reliability of technical transport means analysis. 
The author’s previous work, Ngandu [2] used neural network 
in Octave 5.2.0 for prediction of compressive strength of rice 
husk incorporated concrete as cement partial replacement/
admixture, and the selected neural network indicated rela-
tively good performance. In the study by Chandwani et al. [3] 
on modelling of slump for ready-mix concrete, neural network 
models developed using MATLAB 2011b, showed a promising 
approach in modelling of unstructured problems in relation to 
concrete behavior. Sathyan et al. [4] used random kitchen sink 
algorithm and regularized least square algorithm, in GURLs 
toolbar in MATLAB and the model was able to satisfactorily 
predict hardened and fresh properties of self-compacting 
concrete. According to Jayaseelan et al. [5], neural network 
model performed well in prediction of fresh properties and 
compressive strength of flowable concrete using MATLAB; 
the model exhibited very low root mean square error and 
mean absolute percentage error and indicated high accuracy 
level. Hasanzade-Inallu et al. [6] used artificial neural network, 
the model implemented by MATLAB R2019a, and to bring 
different input and output, variables were normalized with 
neural network model trained by bat algorithm which in-
dicated superiority when compared to multiple regression 
model for prediction of compressive strength of concrete 
with manufactured sand. According to Eaton et al. [7], GNU 
Octave is a freely redistributable software and is a high-level 
language to solve problems such as linear and nonlinear 
equations and statistical analysis.

This study aimed at evaluating, through statistical means 
the artificial neural network model developed using GNU OC-
TAVE software for concrete incorporated with waste glass as 
aggregates. The model datasets were adopted from reviews. 
50 datasets from 9 sources were used and in some situations 
modifications, or (logical) assumptions were made.

1.1 Glass, Waste Glass and (Waste) Glass 
Aggregates

Large scale use of waste glass as concrete aggregate 
would potentially reduce amount of waste in landfill. Research 
by Sharba [8], indicated waste glass physical properties values 
of finesse modulus at 2.31, absorption at 0.41% and specific 
gravity at 2.17. A study by Du and Tan [9], on waste glass 
powder as cement replacement indicated specific gravity of 
2.53 for waste glass powder; Kuruppu and Chandratilake [10] 
used different glass types as coarse aggregates substitutes, 
with specific gravity reported at 2.5. Drzymała et al. [11] used 

waste glass from an electrical company that utilized waste, 
glass lighting waste, with density and absorbability indicated 
at 2630 kg/m3 and 0.1% respectively. Ke et al. [12] reported 
voids at 35.3%, water absorption at 0.38%, particle densi-
ty of 2.5g/cm3 for waste glass and density for natural fine 
aggregate was reported at 2.61g/cm3. Table I shows values 
for chemical compositions of glass from reviews, where the 
percentage composition of SiO2 is dominant.

Table I.

SELECTED CHEMICAL PROPERTIES FOR GLASS/WASTE GLASS FROM 

REVIEWS

SiO2 (%) Na2O &/or 
K2O (%) CaO (%) MgO (%) Al2O3 (%) Fe2O3 (%) Source

72.08 13.87*# 10.45 0.72 2.19 0.22 [9]

69.43 8.96 7.67 6.85 1.95 1.24 [8]

70-74 13-15 7-11 3-5 0.5-2 > 0.1 [13]

71-75 12-17*#* 6-12 0.5-4 1-3 [12]

Note: *#Value computed from source; *#* Na2O

Source: The authors.

According to Sharba [8], decline in workability as waste 
glass ratio increased was attributed to weak geometry of 
glass waste, hence less fluidity mixes and the fineness mod-
ulus diminution. According to Dabiri et al. [14], addition of 
micro-silica increased the specimen’s compressive strength. 
As reported by Dabiri et al. [14], citing from previous studies, 
the concern of alkali silica reaction (ASR), could be prevented 
by addition of micro-silica to the concrete mix.

A study by Drzymała et al. [11] indicated the presence 
of air voids near glass aggregate grains in concrete, the 
flat shape of glass aggregate being a possible cause of air 
accumulation under the grain, also with increase in glass 
aggregate amount, concrete absorption increased this, pos-
sibly resulting in air voids in concrete. A study by Sharba [8] 
indicated the highest value for compressive strength at 25% 
waste glass as sand replacement (not indicated if % replace-
ment was volume or weight based), with lower strengths 
compared to the control mix recorded above; that percentage 
replacement, the lower strength, could be due to reduction 
in adhesive strength among the surface of cement paste and 
waste glass aggregates. AL-Bawi et al. [15] attributed cracks 
in concrete to high brittleness and poor geometry of glass 
aggregate that affect the adhesion between cement paste 
and glass particles. According to Kuruppu and Chandratilake 
[10], waste glass use in concrete in architectural form would 
present greater opportunities for value adding and recovery 
of cost, and could be utilized instead of expensive materials 
such as marble and granite. 
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2. Method

2.1 Data and Output

Dataset were obtained from reviews of 9 sources that 
produced 50 datasets as shown in Table II, with the mod-
ifications indicated. Also, some (logical) assumptions were 
made in order to obtain variable for model inputs. Seven 
input variables as shown in Table II included: % difference for 
super-plasticizer (SP) or admixtures from the control; water 
to binder ratio; fly ash or micro-silica as a % of binder; control 
strength (without glass aggregate) or target strength (MPa); 
% recycled glass; aggregate types i.e., fine or coarse aggre-
gates or both. The compressive strength (MPa), of concrete 
with partial or 100% glass waste aggregate was the model 
output. The range for compressive strengths for dataset to 
be predicted was between 65.2 MPa and 4.23 MPa.

Dataset were divided into 3, namely: training, validation/
check and testing. Randomization of datasets was conducted 
multiple times, while the % differences of averages for 3 
categories of datasets from the overall dataset were checked 
to ensure datasets were not extremely biased. The datasets 
were normalized between values of 0 and 1. For better gen-
eralization, ability of artificial neural networks and better 
comparison and avoidance of influence of greater param-
eter inputs and outputs are normalized, within a range of 
between 0 and 1, using equation (1) and the normalized 
output is de-normalized to actual values using equation (2) 
as indicated by Henigal et al. [21]; equations (1) and (2) were 
used for this study.

Norm
Orig Min
Max Min

.
. .

. .
�

�� �
�� � � �1

 

Orig Norm Max Min Min. . . . .� �� � � � �2      

Where: Norm.: Normalized value; Orig.: Original value; 
Min.: Minimum value; Max.: maximum value. 

Jayaseelan et al. [5] dataset for flowable concrete proper-
ties prediction, using neural network with BFGS-Quasi-New-
ton back propagation used 32 datasets for training, 8 data-
sets for validation, 8 datasets for testing. This represented 
66.7% for training and 16.7% each for validation and testing. 
Previous work by the author, Ngandu [2], used 51 datasets 
(70.83%) for training, 10 datasets (13.89%) for checking/
validation and 11 datasets (15.28%) for testing. This study’s 
overall dataset of 50 was divided into: 34 (68%) for training; 
7 (14%) for checking/validation; 9 (18%) for testing.

2.2 Artificial Neural Network (ANN)

The ANN models had 3 layers, namely: an input layer with 
7 nodes, one hidden layer and an output layer with 1 node 
as illustrated in Fig. 1.

Fig 1. STRUCTURE OF ANN FOR THE STUDY

Source: the author.

The structure for ANN models was developed and run 
in GNU Octave. According to Eaton et al. [7], GNU Octave 
is a high-level language to solve problems such as linear 
and non-linear equations and statistical analysis and other 
numerical experiments. The network was developed based 
on Oman [22] illustration on neural network using Octave. 
According to Oman [22], back propagation algorithm goal 
is to train the network to minimize cost, with the error at a 
certain layer in the network taken and propagated backwards 
through the network. This study adopted Tanh function for 
the activation function, similar to previous work by the author 
Ngandu [2], and the one referenced from Tiwari and Rai [23] 
the same referenced from Sharma [24]. The learning rates for 
this research were kept constant at 0.06.

Statistical analyses were computed using OCTAVE, includ-
ing RMSE and R2 for the normalized compressive strength 
values. Various trials were conducted with nodes of hidden 
layer of between 1 and 26. The number of iterations were 
varied for particular number of nodes of hidden layer and 
RMSE (normalized values) were evaluated to indicate per-
formance of model. The normalized RMSE values for check/
validation dataset were used to evaluate and select models 
in comparison to other trial models, with the same number of 
nodes in the hidden layer but different number of iterations. 
The overall RMSE for normalized values was used to select a 
suitable model between models having different numbers 
of nodes in hidden layers. Subsequently, the values were de-
normalized and the RMSE, R2, MAE and MAPE were computed 
for the selected model using Libre Office Calc Spreadsheet.

2.3 Evaluation methods

The statistical evaluations methods, RMSE, R2, MAE and MAPE 
were used to evaluate the selected model. Study by Zhang et al. 
[25] on examination of differences between predicted and exper-
imental values applied RMSE (equation 3), MAPE and R2 (equation 
4). Chandwani et al. [26] used different statistical performance 
metrics for performance evaluation of trained models includ-
ing MAE (equation 5) and MAPE (equation 5)- among others.
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Table II. 

DATASET VARIABLES INCLUDING MODIFICATIONS AND ASSUMPTIONS / LOGICAL ASSUMPTIONS

**% SP/ admix. from 
control #W/B ratio ***fly ash/ micro-silica % 

of binder 
#* control strength (MPa) § % recycled glass weight ξ aggregate type replaced/ 

Added * comp. strength (MPa) ref.

*§ 0 §§ 0.60 §# 13.79 46.19

10

F C

39.95

[11]
30 31.17

50 14.16

100 4.23

0.2
§§ 0.47 §# 22.48 ## 45.9

25

F ## 

56.9

[16]0.3 50 57.5

0.3 100 59.1

0.5 τ37

τ10

F

τ35.9

[17]
τ20 τ34.2
τ30 τ28.8
τ40 τ22.7

§§ 0.51 ## 54.8

10

F

## 

53.2

[12]

30 50.0

60 44.7

100 37.5

10

C

46.0

30 44.0

60 42.9

1 100 25.6

0.54 *§ 31.9
10

F *§

16.0

[14]

20 27.3

§§ 0.518 57.5 *§ 31.4

10 23.7

20 37.8

30 38.9

40 46.5

50 50.4

§§ 0.52 30.53

φ 4.3

C

37.36

[18]
8.6 37.75

13.0 32.37

17.3 31.17

-0.01

0.35 20 ∞ 66.7

20.9 F 65.2

[15]

-0.12 100.0 F 53

-0.03 φ 19.2 C 63.1

-0.12 100 C 51.7

-0.03 φ 20.0 F C 62

-0.12 100 F C 46.6

-0.03 φ 41.4 F ## 62.4

-0.096 φ 61.4 F ## 58.8

-0.11 φ 80.9 F ## 56.6

-0.06 φ 38.7 C ## 60.8

-0.09 φ 58.7 C ## 58.7

-0.06 φ 40.1 F C ## 59.3

-0.09 φ 60.1 F C ## 56.0

-0.10 φ 80.0 F C ## 48.4

0.45 32 100 C 24.6 [19]

0.6 30.67

φ 15.1

F

32.67

[20]

φ 25.5 ## 27.75

φ 35.6 ## 27.5

φ 44.9 ## 27

50 ## 27

Source: The author.

Notes: * Compressive (comp.) strengths or their averages, close or at ultimate strengths or strength development pattern assumed similar to the ultimate; ** Super-plasticizer 
(SP) or admixtures (admix.), difference from the control calculated based on binder weight, if indicated/seen, otherwise assume 0 or negligible; # Water to binder ratio the 
proportions are indicated, calculated or assumed (logically) to weight based; #*Control strength: (averages) compressive strength at 0% glass waste or target strength; § 
% recycled glass weight as indicated in source or converted or calculated in weight or assumed to be so; ξ F (fine aggregate) C (coarse aggregate): Numerical value were 
assigned, for the purpose of predictive model input, where one (1) was assigned if glass fine or coarse aggregate, otherwise zero (0); *§ Constant admixture used for 
different mix ratios; §§ Water to binder ratio calculated from given values; §# Fly ash ratio calculated from given values; *** Fly ash or micro-silica proportion by 
weight or assumed/taken to be so; ## Values estimated/gotten from graph; τ: Translated from Arabic to English; *§ Conversion to MPa; φ % calculated from given 
values; ∞ Value based on graph or/and values given;
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Where E: Experimental value; P: Predicted value; n: total 
number in the group; j: Particular values of a data set;

2.4 Comparison of predicted and experimental 
data

28 datasets, from the 50, with waste glass fine aggregate 
incorporated concrete were used to compute the % difference 
from the control. The computed values were averaged based 
on clustered percentages of glass fine aggregates amounts.

3. Results

The model with 24 nodes in its hidden layer and 90,000 
iterations was selected, based on the lower normalized RMSE 
values. Table III shows the denormalized results for RMSE, 
MAPE, R2 and MAE for the selected model.

Table III.

STATISTICAL EVALUATION RESULTS FOR SELECTED ANN MODEL

Train Dataset Check/Validation 
Dataset

Testing 
Dataset

Overall 
Dataset

RMSE (MPa) 1.288 1.718 5.594 2.679

MAE (MPa) 0.911 1.335 3.418 1.422

MAPE (%) 2.64 3.918 25.60 6.951

R2 0.999 0.9985 0.983 0.996

Source: The author.

Train dataset indicated RMSE, MAE, MAPE and R2 of 1.288 
MPa, 0.911 MPa, 2.64% and 0.999 respectively, hence show-
ing better performance when compared to the other two 
datasets. The overall dataset had RMSE, MAE, MAPE and R2 of 
2.679 MPa, 1.422 MPa, 6.951% and 0.996. Fig. 2 is a graphical 
representation for the 50 datasets of the experimental and 
predicted compressive strength values.

Fig. 2: EXPERIMENTAL (REVIEW) AND PREDICTED COMPRESSIVE 

STRENGT H VALUES

Source: The author.

The graph in Fig. 2 shows a visual illustration for exper-
imental values from the review and the predicted values 
by the selected model. Table IV are values for average % 
differences, for waste glass fine aggregates from the control, 
classified based on proportions of glass aggregates.

Table IV.

DEVIATION % BASED ON WASTE GLASS FINE AGGREGATE PROPORTION

Classes for % fine 
aggregate

Experimental (Reviewed) 
% Average Deviation

Predicted % Average 
Deviation

10 -20.11 -5.73

>10 to 20 1.20 -4.34

>20 to 30 0.82 3.07

>30 to 40 -0.37 3.44

>40 to 50 11.11 11.03

>50 to 81 -15.13 -14.53

> 81 -7.86 -9.11

Source: The author.

The experimental dataset lowest and highest average % 
differences, for % glass waste fine aggregates from control, 
were at 10% and between >40 and 50% fine aggregate data, 
with -20.11% and 11.11% respectively. The lowest and highest 
average % differences for predicted data were those within 
the categories of >50% to 81% and >40 to 50% glass fine 
aggregate data, with -14.53% and 11.03% respectively. For 
both experimental and predicted values, the >20% to 40% 
glass fine aggregates indicated values comparatively closer 
to the control strengths, compared to their other respective 
categories of % glass fine aggregates.

4. DISCUSSION

The RMSE of 1.288 MPa for training dataset of selected 
dataset, indicated lower error margins as compared to the 
other two datasets categories. The highest RMSE was 5.594 
MPa for test dataset, while the overall had 2.679 MPa, for 
the same. Islam et al. [27] model, using statistical regression 
analysis for prediction of strength of rice husk ash high perfor-
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mance incorporated concrete, indicated 28-days compressive 
strength RMSE of 4.96, an indicator of accuracy of the model 
fit. In the author’s previous study, Ngandu [2], the selected 
model indicated a RMSE of 5.10 MPa for the overall dataset, 
hence an indicator of reasonable accuracy. For this study the 
overall dataset RMSE of 2.679 MPa shows that the model had 
a good level of accuracy, while putting into consideration the 
range of compressive strengths for experimental data from 
reviews of between 65.2 MPa and 4.23 MPa.

The training dataset indicated MAE, MAPE and R2 of 0.911 
MPa, 2.64% and 0.999 respectively, with better performance 
compared to the check/validation and testing dataset. The 
test dataset indicated comparatively lower performance 
with 3.418 MPa, 25.60% and 0.983 for MAE, MAPE and R2 

respectively. The overall dataset indicated MAE, MAPE and R2 

of 1.422 MPa, 6.951% and 0.996. According to Jayaseelan et 
al. [5], MAPE values for slump flow, V-funnel flow, L-box flow 
and compressive strength were less than 10% for values of 
a neural network model using MATLAB, and trained using 
Levenberg-Marquardt back propagation, hence showing 
very good model performance. The MAPE values for training, 
checking/validation and overall datasets were less than 7%, 
but the test dataset indicated a relatively high error of 25.6% 
for MAPE. This variation could be due to the fact that datasets 
were obtained from different sources and other factors could 
have impacted the compressive strength.

Generally, with overall RMSE and MAPE value of 2.679 
MPa and 6.951% respectively, and maximum MAE of 3.418 
MPa for test dataset and minimum R2 of 0.983 for test dataset, 
the selected model showed good level of accuracy and good 
generalization. The average percentage differences based on 
the classifications of percentage glass fine aggregate glass, 
did not indicate a consistent trend, for the experimental data 
from reviews. This could be attributed to other factors that 
possibly affect compressive strengths of concrete mixes. 
For both experimental and predicted values, the category 
having greater than 20% to 40% glass fine aggregates indi-
cated values that were comparatively closer to the control 
strengths and the category greater than 40% to 50% glass fine 
aggregates had comparatively higher positive percentage 
differences of just over 11%. Based on this, glass replacement 
as fine aggregates in structural concrete could be feasible 
up to 50% by weight, with consideration to other factors 
that would influence structural performance of the concrete.

5. CONCLUSIONS AND RECOMMENDATIONS

The overall RMSE, MAPE, MAE and R2 exhibited by the 
selected model were generally within acceptable values, 
and the model showed good level of accuracy and good 
generalization. This is also illustrated by the graph showing 
of experimental values from review and predicted values. 
Furthermore, the performance is commendable, considering 
that the 50 datasets were not from a single experimental 
program.

The percentage average differences between the com-
pressive strength values of concrete based on groups of 
percentages of glass fine aggregates and control compressive 
strength did not indicate a general trend for the experimen-
tal dataset. This indicates that other factors had possible 
significant effects on the strengths of concrete with partial 
or 100% fine glass aggregates.

The study recommends:

The application of machine learning techniques for mod-
eling, quality control and codes of practice of concrete with 
partial or full glass fine aggregate.

Research on possible utilization of glass fine aggregates 
up to 50% by weight, with consideration to other influencing 
factors.

Research on suitable cost-effective and environmentally 
friendly additive to enhance structural performance of glass 
aggregate in concrete. Economic and environmental assess-
ments on use of glass aggregates.
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