M2M Architecture for environmental monitoring in real time

Keywords: M2M, IoT, Networks of environmental sensors, Architecture

Abstract

In the Institute of Tropical Geography (IGT), and in the rest of the centers that develop the Environmental Information System of the country, environmental measurements are not obtained in real-time. This is because the technology used to communicate this information, from the sensors that capture it to the center where it is processed, is obsolete. The objective of this work is to provide a solution to the problems raised above using Machine to Machine communication (M2M), as part of the Internet of Things (IoT) technology. To achieve the above, the M2M architecture defined by the European Telecommunications Standards Institute was revised and, based on it, the one that should be used to obtain environmental data in real-time was specified. Then, a geographical area with special characteristics was selected, located in a difficult-to-access pre-mountain zone on the outskirts of the Consolación del Sur municipality, in the Pinar del Río province of Cuba, where environmental factors of interest for the country are currently monitored using archaic methods. In the M2M area of this scenario, several alternatives were analyzed to obtain the data, which allowed selecting the most appropriate one, which is the one explained in this work

Downloads

Download data is not yet available.

Author Biographies

Elaine Cubillas Hernández, Technological University of Havana (CUJAE)
Technological University of Havana (CUJAE), Cuba
Caridad Anías Calderón, Technological University of Havana (CUJAE)
Technological University of Havana (CUJAE), Cuba
Tatiana Delgado Fernández, Universidad Tecnológica de La Habana; Unión de Informáticos de Cuba
Universidad Tecnológica de La Habana; Unión de Informáticos de Cuba, Cuba

References

[1] K.-L. Huang, L.-H. Yen, J.-T. Wang y e. al., «A Backbone-Aware Topology Formation (BATF) Scheme for ZigBee Wireless Sensor Networks,» Wireless personal communications, vol. 68, nº 1, pp. 47-64, 2013.

[2] D. Niyato, L. Xiao y P. Wang, «Machine-to-machine communications for home energy management system in smart grid,» IEEE Commun. Mag., vol. 49, nº 4, pp. 53-59, 2011.

[3] M. S. H. Ansari y M. Mehrotra, «Securing M2M communication in Smart Cities,» de International Conference for Emerging Technology (INCET), 2020, june.

[4] Y. Cao, T. Jiang y Z. Han, «A survey of emerging M2M systems: Context, task, and objective,» IEEE Internet of Things Journal, vol. 3, nº 6, pp. 1246-1258, 2016.

[5] S. D. Castilho, E. P. Godoy y F. Salmen, «Implementing Security and Trust in IoT/M2M using Middlewarepp,» de International Conference on Information Networking (ICOIN), 2020.

[6] P. K. Verma, R. Verma, A. Prakash, A. Agrawal, K. T. R. Naik, T. Khalifa, M. Alsabaan, T. Abdelkader y A. Abogharaf, «Machine-to-Machine (M2M) communications: A survey,» Journal of Network and Computer Applications, vol. 66, pp. 83-105, 2016.

[7] O. A. Amodu y M. Othman, «Machine-to-Machine Communication: An Overview of Opportunities,» Computer Networks, 2018.

[8] N. Xia, H. Chen y C. Yang, «Radio resource management in machine-to-machine communications—A survey,» IEEE Communications Surveys & Tutorials,, vol. 20, nº 1, pp. 791-828, 2017.

[9] K. Chen y S. Lien, «Machine-to-machine communications: Technologies and challenges.,» Ad Hoc Networks, vol. 18, pp. 3-23, 2014.

[10] S. K. Datta, C. Bonnet y N. Nikaein, «An IoT gateway centric architecture to provide novel M2M services.,» de 2014 IEEE World Forum on Internet of Things (WF-IoT), 2014.

[11] J. B. Gomes, J. J. Rodrigues, R. A. Rabêlo, S. Tanwar, J. Al‐Muhtadi y S. Kozlov, «A novel Internet of things‐based plug‐and‐play multigas sensor for environmental monitoring,» Transactions on Emerging Telecommunications Technologies, vol. e3967, pp. 1-11, 2020.

[12] K. Shuang, X. Shan, Sheng, Z. y C. Zhu, «An efficient ZigBee-WebSocket based M2M environmental monitoring system,» de 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, 2014.

[13] A. Ochoa, L. Cangrejo y T. Delgado, «Alternativa Open Source en la implementación de un sistema IoT para la medición de la calidad del aire,» Revista Cubana de Ciencias Informáticas, vol. 12, nº 1, pp. 189-204, 2018.

[14] ETSI, «Machine-to-Machine communication (M2M): Functional architecture», Technical Specification ETSI TDS 102 690 V1.2.1, 2013, https://www.etsi.org/deliver/etsi_ts/102600_102699/102690/01.02.01_60/ ts_102690v010201p.pdf.

[15] Libelium, «Plug & Sense! Technical guidej», Development website. https://development.libelium.com/plug-and-sense-technical-guide/ . 2019, https://development.libelium.com/plug-and-sense-technical-guide/

[16] Eurotech, «ReliaSENS 18-12-01 Cloud-connected Environment Monitoring System», User Manual. RESENS-18-12-01_UsrMan_EN_1.0. 2014, file:///C:/Users/arturo/Downloads/RESENS-18-12-01_UsrMan_EN_1.0.pdf

[17] Murata, «SN802GR420-4», Innovation in electronics. 2018, https://wireless.murata.com/datasheet?/RFM/data/sn802gr420-4.pdf.

[18] Eurotech, «ReliaGATE 50-21- Especifications», Multi-Service Gateway & Edge Controller. 2014, https://www.eurotech.com/DLA/datasheets/Products_Eurotech/ReliaGATE50-21_sf.pdf.

[19] Eurotech, «IoT Edge Framework» Everyware Software Framework Developer's Hub. 2020, https://esf.eurotech.com/docs.

[20] Geoicon, «OpenGeo Suite» 2020, http://www.geoicon.com/products/third-party-products/opengeosuite.
Published
2021-01-01
How to Cite
Cubillas Hernández, E., Anías Calderón, C., & Delgado Fernández, T. (2021). M2M Architecture for environmental monitoring in real time. ITECKNE, 18(1), 18-25. https://doi.org/https://doi.org/10.15332/iteckne.v18i1.2531
Section
Research and Innovation Articles