Encabezado de página
DOI: https://doi.org/10.15332/iteckne.v14i2.1772

Evaluation of CFAR detectors performance

Evaluación del desempeño de detectores CFAR

José Raúl Machado-Fernández, Norelys Mojena-Hernández, Jesús de la Concepción Bacallao-Vidal

Texto completo:

PDF

Resumen(es_ES)

La operación de los radares costeros y oceánicos se ve afectada porque los blancos se encuentran embebidos en un fondo de clutter marino. De acuerdo con el criterio de Neyman-Pearson, los detectores de radar siempre buscan garantizar un valor determinado de probabilidad de falsa alarma antes de mejorar otras variables del sistema. Utilizando la herramienta matemática MATLAB, los autores evaluaron el desempeño de los procesadores CA, OS, MSCA, AND, OR e IS-CFAR con respecto al mantenimiento de la probabilidad de falsa alarma concebida a priori en el diseño. Luego de someter los esquemas a diferentes perfiles de prueba con clutter distribuido Rayleigh, se concluyó que la mayoría de las alternativas presentan problemas ante determinadas situaciones que pueden aparecer con relativa frecuencia en ambientes reales. Consecuentemente, se ofrecen recomendaciones sobre cuál es el mejor esquema para emplear y garantizar una desviación reducida de la probabilidad de falsa alarma operacional con respecto a la de diseño cuando se enfrenta clutter heterogéneo.

Resumen(en_US)

The operation of coastal and off-shore radars is affected because the targets are surrounded by a background filled with sea clutter. According on the Neyman-Pearson criterion, radar detectors must always try to maintain a constant false alarm probability before trying to improve other system variables. Using the MATLAB mathematic software, the authors evaluated the performance of the CA, OS, MSCA, AND, OR and ISCFAR processors concerning their ability to maintain the constant false alarm probability conceived in the design. After testing the schemes with different test profiles whose samples were Rayleigh distributed, it was concluded that most of the alternatives exhibit problems when facing certain situations that may appear in real environments. Consequently, recommendations on which solution is best to use are offered for guaranteeing a reduced deviation of the operational false alarm probability from the value conceived in the design when processing heterogeneous clutter.

 

Referencias


W. L. Melvin and J. A. Scheer, Principles of Modern Radar, Vol III Radar Applications: Scitech Publishing, 2014.

D. A. de la Mata Moya, “Diseño de detectores robustos en aplicaciones de radar”, doctoral thesis, University of Alcalá, Spain, 2012.

K. Ward, R. Tough, and S. Watts, Sea Clutter Scattering, the K Distribution and Radar Performance, 2nd edition, London, United Kingdom: The Institution of Engineering and Technology, 2013.

M. Barkat, Signal Detection and Estimation, 2nd edition: Artech House, 2005.

I. Gato Martínez, Algoritmo para la Estimación de la Distribución del Clutter Marino, Telecommunications and Electronics Engineering Degree, Telecommunications and Telematics Department, Electric Faculty, Instituto Superior Politécnico José Antonio Echeverría (ISPJAE), La Habana, Cuba, 2014.

R. C. Sánchez Rams, Implementación del detector CA-CFAR en VHDL para crear un PC-Radar Cubano usando FPGA, Telecommunications and Electronics Engineering Degree, Telecommunications and Telematics Department, Electric Faculty Instituto Superior Politécnico José Antonio Echeverría (ISPJAE), La Habana, Cuba, 2014.

J. R. Machado Fernández and J. C. Bacallao Vidal, “MATE-CFAR: Ambiente de Pruebas para Detectores CFAR en MATLAB”, Telem@tica, vol. 13(3), pp. 86-98, 2014.

J. R. Machado Fernández, “Estimation of the Relation between Weibull Distributed Sea clutter and the CACFAR Scale Factor”, Journal of Tropical Engineering, vol. 25(2), pp. 19-28, 2015.

J. C. Bacallao Vidal, “Un modelo Teórico de la Técnica DRACEC. Metodología del Proceso de Adaptación al Fondo”, PhD in Technical Ciences, Instituto Técnico Militar “José Martí”, La Habana, Cuba, 2003.

R. López Monzón, Estudio y optimización de Filtros CFAR, empleando criterios de energía con aplicación a Radares de Navegación, Mecanic Engineering Degree, Departamento de Ingeniería Mecánico-Eléctrica, Universidad de Piura, Piura, Perú, 2013.

M. B. El Mashade, “Performance Analysis of the Modified Versions of CFAR Detectors in Multiple-Target and Nonuniform Clutter”, Radioelectronics and Communications Systems, vol. 56(8), pp. 385-401, 2013.

M. A. Habid and M. Barkat, “CA-CFAR Detection Performance of Radar Targets Embedded in Non Centered Chi-2 Gamma Clutter”, IEEE 2008 Radar Conference, 2008.

H. Rohling, “Radar CFAR Thresholding in Clutter and Multiple Target Situations”, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-19(4), 1983.

P. P. Gandhi and S. A. Kassaj, “Analysis of CFAR Processors in Nonhomogeneous Background”, IEEE Transactions on Aereospace and Electronic Systems, vol. 24(4), pp. 427-445, 1988.

H. Golman and Bar David, I., “Analysis and application of the excision CFAR detector”, in IEEE Proceedings, 1988, pp. 563-575.

H. Weiss, “Analysis of Some Modified Ordered Statistic CFAR-OSGO and OSSO-CFAR”, IEEE Transactions on Aereospace and Electronic Systems, vol. 26(1), pp. 197-202, 1990.

D. T. Nagle, “Analysis of Robust Order Statistic CFAR Detectors”, Doctor of Philosophy in Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois, 1991.

Y. He and J. Guan, “A New CFAR Detector with Greatest of Selection”, IEEE 1995 International Radar Conference, 1995.

W. Liu and X. Liu, “AND-CFAR and OR-CFAR Detectors Design in Weibull Background”, IEEE 2003 International Radar Conference, 2003.

H. Wenlin, W. Yongliang, W. Shouyong, and F. Qianxue, “A Robust CFAR Detector Based on Ordered Statistic”, CIE 2006 International Conference on Radar, pp. 1-4, Oct. 2006.

J. Zhao, R. Tao, and Y. Wang, “A New CFAR Detector Based on Ordered Data Variability”, IEEE Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006.

H. Mansouri, M. Hamadouche, F. Youcef Ettoumi, and B. Magaz, “Performance Analysis of a Weighted Max CFAR Processor,” International Radar Symposium, pp. 1-4, May 2008.

S. Erfanian and S. Faramarzi, “Performance of Excision Switching-CFAR in K distribuited sea clutter”, 14th Asia-Pacific Conference on Communications, Tokyo, 2008.

J. Mo Yang and W. Woo Kim “Performance Analysis of a Minimum Selected Cell Averaging CFAR Detection,” 11th IEEE International Conference on Communication Technology, 2008, pp. 442-445.

A. Tom and R. Viswanathan, “Switched Order Statistics CFAR Test for Target Detection”, IEEE 2008 Radar Conference, pp. 1 - 5, May 2008.

W. K. Abd-Ali and G. A. Aramice, “Analysis of improved Switching Constant False Alarm Rate Processor (IS-CFAR) for Different Swerling Radar Target Cases”, Asian Journal of Information Technology, vol. 10(7), pp. 290-295, 2011.

C. Ru Hong, Y. Tsung Hwang, W. Chieh Hsu, C. Ho Chang, J. Chi Huang, and H.-E. Liao, “Programmable AND-CFAR Signal Detector Design and Its FPGA Prototyping for FMCW Radar Systems”, International Symposium on VLSI Design, Automation and Test, pp. 1 - 4, April 2011.

A. Moustafa, F. M. Ahmed, K. H. Moustafa, and Y. Halwagy, “A New CFAR Processor Based on Guard Cells Information”, IEEE 2012 Radar Conference, May 2012.

J.-W. Shin, Y.-K. Seo, D.-W. Do, S.-M. Choi, and H.-N. Kim, “Modified Variability-Index CFAR Detection Robust to Heterogeneous Environment”, presented at the International Conference on Systems and Electronic Engineering, Phuket (Thailand), 2012.

W. K. Abd-Ali and N. Abd-Ullah, “Evaluation of ANDCFAR and OR-CFAR Processors under Different Clutter Models”, Eng. & Tech. Journal, vol. 31(5), pp. 964-975, 2013.

J. Hun Kim and M. R. Bell, “A Computationally Efficient CFAR Algorithm Based on a Goodness-of-Fit Test for Piecewise Homogeneous Environments”, IEEE Transactions on Aerospace and Electronic Systems, vol. 49, pp. 1519-1535, 2013.

D. S. Ranjan and H. K. Moorthy, “Development of Adaptive Algorithm for CFAR in non-homogenous environment” International Journal of Engineering and Innovative Technology (IJEIT), vol. 3, 2013.

D. Ivkovic, M. Andric, and B. zrnic, “False Alarm Analysis of the CATM-CFAR in Presence of Clutter Edge”, International Journal of Engineering and Innovative Technology (IJEIT), vol. 23(3), pp. 66-72, 2014.

D. Ivković, M. Andrić, B. Zrnić, P. Okiljević, and N. Kozić, “CATM-CFAR Detector in the Receiver of the Software Defined Radar”, Scientific Technical Review, vol. 64(4), pp. 27-38, 2014.

J. R. Machado Fernández and J. C. Bacallao Vidal, “Optimal Selection of the CA-CFAR Adjustment Factor for K Distributed Amplitude Samples with a Fluctuating Shape Parameter (Under Review),” Nova Scientia, 2016.

J. R. Machado Fernández and J. C. Bacallao Vidal, “Estimation of the Optimal CA-CFAR Threshold Multiplier in Pareto Clutter with Known Parameters (under revision),” Entramado, vol 13, 2016.


Enlaces refback

  • No hay ningún enlace refback.
ISSN: 1692-1798 (impreso)
ISSN: 2393-3483 (en línea)



Imagen