
Recibido: 20/03/2018 Aceptado: 25/06/2018 ITECKNE Vol. 15 Número 2 • diciembre 2018 • ISSN 1692-1798 • ISSN Digital 2339-3483 • 107 - 121

https://doi.org/10.15332/iteckne.v15i2.2072

Building malware classificators usable by State
security agencies

Construcción de clasificadores de malware para agencias de
seguridad del Estado

Resumen– El sandboxing ha sido usado de manera re-
gular para analizar muestras de software y determinar
si estas contienen propiedades o comportamientos sos-
pechosos. A pesar de que el sandboxing es una técnica
poderosa para desarrollar análisis de malware, esta re-
quiere que un analista de malware desarrolle un análisis
riguroso de los resultados para determinar la naturaleza
de la muestra: goodware o malware. Este artículo pro-
pone dos modelos de aprendizaje automáticos capaces
de clasificar muestras con base a un análisis de firmas
o permisos extraídos por medio de Cuckoo sandbox, An-
droguard y VirusTotal. En este artículo también se pre-
senta una propuesta de arquitectura de centinela IoT
que protege dispositivos IoT, usando uno de los modelos
de aprendizaje automáticos desarrollados anteriormen-
te. Finalmente, diferentes enfoques y perspectivas acer-
ca del uso de sandboxing y aprendizaje automático por
parte de agencias de seguridad del Estado también son
aportados.

Palabras claves– Cuckoo sandbox, ciencia de datos,
aprendizaje de máquina, análisis de malware, sandbo-
xing.

Abstract– Sandboxing has been used regularly to
analyze software samples and determine if these contain
suspicious properties or behaviors. Even if sandboxing
is a powerful technique to perform malware analysis,
it requires that a malware analyst performs a rigorous
analysis of the results to determine the nature of the
sample: goodware or malware. This paper proposes two
machine learning models able to classify samples based
on signatures and permissions obtained through Cuckoo
sandbox, Androguard and VirusTotal. The developed mo-
dels are also tested obtaining an acceptable percentage

David Esteban Useche-Peláez
Escuela Colombiana de Ingeniería Julio Garavito

Bogotá, Colombia
david.useche@mail.escuelaing.edu.co

Daniela Sepúlveda-Alzate
Escuela Colombiana de Ingeniería Julio Garavito

Bogotá, Colombia
daniela.sepulveda@mail.escuelaing.edu.co

Daniel Orlando Díaz-López
Escuela Colombiana de Ingeniería Julio Garavito

Bogotá, Colombia
daniel.diaz@escuelaing.edu.co

Diego Edison Cabuya-Padilla
Comando Conjunto Cibernético

Bogotá, Colombia
diego.cabuya@ccoc.mil.co

of correctly classified samples, being in this way useful
tools for a malware analyst. A proposal of architecture
for an IoT sentinel that uses one of the developed ma-
chine learning model is also showed. Finally, different
approaches, perspectives, and challenges about the use
of sandboxing and machine learning by security teams
in State security agencies are also shared.

Keywords– Cuckoo sandbox, data science, machine
learning, malware analysis, sandboxing.

1.	 INTRODUCTION

Cyber-attacks currently are not only being ai-
med against conventional computers, but also
against mobile devices and other devices that
are part of the Internet of Things like smart TVs
or smart watches. According to a study conduc-
ted by the security company Kaspersky [1], every
second there are 250 new malicious files against
users of computers and mobile devices in Latin
America and during the last year, there were 1188
million malware attacks approximately repelled by
Kaspersky. This situation increases the work of
malware analysts who have the task of determi-
ning behavior patterns, properties, and indicators
that allow to identify and characterize a malware
to prevent future infection incidents.

Malware or goodware generally comes as a PE
(Portable Executable) file. A PE file contains all in-
formation necessary for the installation of a pro-

ITECKNE Vol. 15 Número 2 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • diciembre 2018 • 107 - 121108

gram, which includes imports or exports, compiler
that was used (gcc, gcc+, javac, etc.), compilation
time zone (e.g. Mon Dec 20 09:03:08 2010 com-
pilation time for WannaCry), digital certificate in-
formation, architecture for which the program was
designed (32 bits or 64 bits), imphash (Hash ge-
nerated from exports or imports), resources that
use the PE (e.g. The ransomware Cerber used a re-
source to ASCII Text, another to zip folder.), hashes
(MD5 or SHA) associated with the program, deve-
loper company signature, installer size, software
version, strings, among others. This information
is useful to infer suspicious features or behaviors
like operating system modules that are being in-
voked and that can allow access to the kernel, or
some not common functions being imported. A PE
program can have extensions: exe, dll, efi, acm,
amongst others. On the other side, an ELF (Execu-
table and Linkable Format) program, which is the
equivalent of PE for Linux systems, can have ex-
tensions: bin, so, elf, mod, among others. Malware
analysis can be performed through static or dyna-
mic analysis of PE files. In static analysis, infor-
mation is obtained from the PE or ELF file using
different reverse engineering methods such as de-
compiles, disassemblers, extract of hashes, etc. In
dynamic analysis, the PE or ELF file is executed,
and its behavior is obtained and analyzed such as
changes in the registry keys (deleted, modified or
created keys), network behavior (IPs or domains
establishing communication) or changes in the
file system (deleted, modified or dropped files).

One technique used by malware analyst is
sandboxing [2]resulting in tens of billions of do-
llars in economic damages each year. Among se-
curity professionals, the skills required to quickly
analyze and assess these attacks are in high de-
mand. Practical Malware Analysis provides a ra-
pid introduction to the tools and methods used to
dissect malicious software (malware which allow
determining if a software sample contains proper-
ties, through a static analysis, or behavior, through
a dynamic analysis, that can be considered suspi-
cious. In a sandbox is possible to create controlled
testing environments which are isolated from the
host operating system, each one of them having
its own disk space and memory. A testing environ-
ment must not access any resource that has not
been specifically assigned to it. Virtual machines
are the mechanism to deploy controlled testing

environments with a different operative system
over which is possible to test suspicious programs
and resources without compromising the host.

An example of malware analysis using sandbo-
xing can be seen with WannaCry. WannaCry was a
ransomware, which affected many Windows com-
puters and servers last year through the exploita-
tion of an SMB 1 vulnerability, which is a protocol
responsible for the communication of Windows
computers on a network [3]. WannaCry encrypts
information stored in a victim pc and requests
a payment that oscillates between 200 to 600
bitcoins to get back access to the files. Through
a sandbox and specifically a static analysis of a
sample of WannaCry is possible to find that it uses
a suspicious function called CryptDestroyKey. The
CryptDestroyKey function is used to destroys the
key hindering the decryption process.

Another information that could be obtained
from WannaCry is the Callback TLS (Thread Local
Storage), which are pieces of code that are execu-
ted before the Entrypoint, i.e. the sample starting
execution point, and that many times are not re-
viewed by a debug system making them exploita-
ble by malware developers which inject malicious
source code into those spaces. Fig. 1 shows the
information obtained from a static analysis for a
Wannacry sample run in a sandbox, which inclu-
des Imphash, sha, compiler, compilation time,
among other details.

Fig. 1. STATIC ANALYSIS OF WANNACRY WITH A SANDBOX

Source: The authors.

There are some notable researches that inte-
grate sandboxing with machine learning seeking

109Building malware classificators usable by State security agencies - Useche, Sepúlveda, Cabuya, Díaz

to potentiate security solutions through interdis-
ciplinarity. One related work is presented in [5]
which proposes the use of machine learning clas-
sification methods for malware detection using
sandbox, behavioral analysis and injection of
instrumentation code. Also, [6]however, it\\ncon-
sistently fails to detect new malware. Supervised
machine learning\\nhas been adopted to solve
this issue. There are two types of features\\nthat
supervised malware detectors use: (i proposes the
use of supervised machine learning methods to
detect malware through the identification of static
(extracted without running the sample) and dyna-
mic (require an execution) characteristics. Similar-
ly, [7]custom code bases and in-memory execution.
Our hypothesis is that we can produce a high de-
gree of accuracy in distinguishing malicious from
trusted samples using Machine Learning with fea-
tures derived from the inescapable footprint left
behind on a computer system during execution.
This includes CPU, RAM, Swap use and network
traffic at a count level of bytes and packets. These
features are continuous and allow us to be more
flexible with the classification of samples than dis-
crete features such as API calls (which can also be
obfuscated proposes the use of machine activity
metrics to automatically identify trustworthy and
reliable portable executable (PE) samples, throu-
gh classification methods that use self-organized
feature maps creating unsupervised clusters of
similar behavior. On the other hand, Donaldson
SE et al. [8] exposes some next-generation cyber-
security axioms and sub-axioms for cybersecurity
teams and state agencies which can help them to
be more effective against attackers. These axioms
states that i) Companies must look at themselves
from the perspective of the attacker and design de-
fenses accordingly, ii) Defenses must be designed
to detect and delay attacks, so that defenders have
time to respond, iii) Layers of defense are required
to contain attacks and redundancy in protection
and iv) Use of active defense to trap and repel at-
tacks after they start, but before they can succeed.

On the other hand, regarding security propo-
sals for IoT ecosystems, an architecture for an IoT
sentinel that protects IoT devices is presented in
[4]. This IoT sentinel is capable of identify devices
and its types from the network it is connected. The
sentinel also reduces potential damage of vulnera-
ble devices by constraining their communications

through specific network rules. The identification
of the devices is done using their network traffic
fingerprint, which is used for anomaly detection
using a machine learning model to detect unusual
behavior on the network.

The paper at hand is composed as follows.
Section 2 presents malware analysis using the
Cuckoo sandbox and introduce data science.
Then, Section 3 proposes a mechanism to apply
data science as support for malware classification
and develops two machine learning models that
classify malware for desktop and mobile operative
systems. Later, Section 3 proposes an architectu-
re for securing IoT ecosystems using a set of rings
one of them based on one of the developed ma-
chine learning models. Next, Section 4 makes a
reflection regarding the use of sandbox and ma-
chine learning by state security agencies. Finally,
some conclusions and future works are included.

2.	 CUCKOO SANDBOXING AND DATA SCIENCE

Sandboxing allows performing static and dyna-
mic analysis of samples, enabling a deeper unders-
tanding of malware and its variants. This section
presents Cuckoo sandbox as a solution to perform
malware analysis and introduce data science.

2. 1	 Cuckoo sandboxing

Cuckoo was born during the Google’s Summer
of Code of 2010 as part of The Honeynet Project.
Claudio Guarnieri is the founder of the project who
performs as a researcher in the fields of computer
security. Claudio Guarnieri has researched botnets
and directed attacks. He has also been a speaker
at Hack In The Box, Black Hat, and Chaos Com-
munication Congress. Cuckoo is an open source
sandbox, which has an active community in char-
ge of its development and a repository which allow
accessing its source code. Cuckoo allows multiple
input formats however in the research developed
in this paper will be a focus in samples of the type
PE and ELF[9].

Fig. 2 shows the topology of Cuckoo sandbo-
xing. The cuckoo server hosts a virtualization en-
vironment through tools such as VMWare or Vir-
tualBox and at least one virtual machine. Virtual
machines are snapshots of an operative system
with an agent.py file installed. The agent.py file is

ITECKNE Vol. 15 Número 2 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • diciembre 2018 • 107 - 121110

the way by which the Cuckoo server communicates
with each of the virtual machines to send samples
to be analyzed. Cuckoo server and the virtual ma-
chines must compose a Host-Only Network, i.e. a
private network that only allows the connection of
a cuckoo server with each of the virtual machines.

To develop malware analysis Cuckoo has se-
veral tools or plugins, like Volatility1 [10] and Tcp-
dump [11]. Volatility is used to perform forensic
analysis of the memory ram of virtual machines,
on the other side Tcpdump is a sniffer that allows
monitoring the traffic of the virtual machine.

Fig. 2. CUCKOO SANDBOX TOPOLOGY

Source: The authors.

Static and dynamic analysis can be carried
out by Cuckoo. As a result of static and dynamic
analyzes a series of malware analysis reports are
generated, which are used to generate signatu-
res that represent characteristics or patterns of a
sample. Cuckoo includes a pool of signatures by
default and allow to incorporate new ones becau-
se is an open source project [12].

Fig. 3 shows a Cuckoo signature which contains
a description and an associated severity: low (1),
normal (2) and high (3). This signature reports the
creation of a window executable on some location
of the filesystem, and in the same way, signatures
can report another suspicious behavior like the
shutdown of an operative system firewall service
or the modification of critical operative system fi-
les. Cuckoo identifies which of the signatures are
present in a sample and include them as matched
signatures in the report.

Cuckoo Sandbox offers the following sections
accessible after a malware analysis is done (Fig. 4):
•	 Summary: It includes the most relevant featu-

res of the analyzed malware, like hashes, size,
imphashes, file type, among others.
1	 https://www.volatilityfoundation.org/

•	 Static Analysis: It contains sections (e.g. .data,
.text, etc.), strings, file size, compilation time,
amongst others elements, obtained from a de-
compilation and static analysis of the sample.

•	 Extracted Artifacts: It indicates what files were
extracted successfully from the sample.

•	 Behavioral Analysis: It contains details of the file
system, registry keys, process tree, and process
content, amongst others elements, obtained
when the sample is executed in a virtual machine.

•	 Network Analysis: It contains communications
managed by the sample through protocols
such as DNS, HTTP, UDP, ICMP etc.

•	 Dropped Files: It shows the files that were crea-
ted or downloaded by the sample.

•	 VM Memory Dump: It contains the result of the
virtual machine memory dump when the sam-
ple is being executed, making possible to ob-
tain some useful information from the sample
like the registry keys values.

•	 Reboot Analysis: Analysis of the status of the
virtual machine where the sample was execu-
ted after a restart of the virtual machine.

•	 Dropped Buffers: It shows the buffers that
were created when the sample was executed.

•	 Process Memory: It contains information about
the processes created in the volatile memory
by the sample.

•	 Compare Analysis: Information provided by Cuc-
koo when two sample analysis are compared.

•	 Export Analysis: It offers the option of expor-
ting the sample report to JSON (JavaScript Ob-
ject Notation) format.

Fig. 5 describe the general steps of a malware
analysis using Cuckoo Sandbox. First, a sample is
submitted to Cuckoo sandbox selecting, between
all available Cuckoo virtual machines, the one over
which the sample must be executed according to
the sample extension type. Second, Cuckoo receives
the sample and performs different analyzes (static
and dynamic) from the application of reversing te-
chniques and the installation and the execution of
the sample in the selected virtual machine. Finally,
Cuckoo generates reports which help the analyst to
determine if the sample is goodware or malware.

111Building malware classificators usable by State security agencies - Useche, Sepúlveda, Cabuya, Díaz

Fig. 3. CUCKOO SIGNATURE

Source: http://jamu.info/pwnypot/docs/customization/signatures.html

Fig. 4. SECTIONS DISPLAYED BY CUCKOO

Source: The authors.

Fig. 5. MALWARE ANALYSIS IN CUCKOO SANDBOX

Source: The authors.

ITECKNE Vol. 15 Número 2 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • diciembre 2018 • 107 - 121112

Cuckoo also allows analyzing URLs to identify
suspicious network behavior i.e. if after acces-
sing an URL some malicious file is downloaded or
some strange activity is evidenced. Fig. 6 shows a
fragment of a report generated by Cuckoo which
includes the score of how suspicious is a Wanna-
Cry URL. Fig. 7 shows all communications toward
different domains identified by Cuckoo for the URL
mentioned in Fig 6. URL analysis allows to verify
communications with domains considered as ma-
licious, or consumption of resources from domains
that are considered clean now of access but that
resolves toward an IP that in the past was invol-
ved with the malicious activity. A domain name
that changes IPs frequently or an IP that modify
domain names recurrently are suspicious findings
that can be obtained from an URL analysis. This in-
formation must be reviewed by a malware analyst
to classify a sample as goodware or malware.

2. 2	 Data science

Last years the amount of available data has
increased markedly, so traditional analytic, based

mainly in statistics, modelers and manual analy-
sis, has been overpassed by the volume and di-
versity of the data to analyze [13] Also, it is fun-
damental to not only extract information from that
data, it has to describe more than the training set,
it has to generalize those attributes to the possible
data the model will receive [14].

In general, data science is the discipline of
using quantitative methods from traditional analy-
sis fields, like statistics and mathematics and
combine them with modern concepts to create
algorithms that analyze the data to discover pat-
terns that allow to generalize over all the possible
data, and to make predictions that solve different
kind of problems [15].

An important key component in data science
projects is the development of a data science model
which can works with an enough efficiency. The se-
lection and tuning of a data science model is a task
that requires some knowledge about the application
of machine learning models and its mathematical
fundamentals, so they can be adjust properly.

Fig. 6. WANNACRY URL ANALYSIS

Source: The authors.

Fig. 7. URL NETWORK ANALYSIS BY CUCKOO

Source: The authors.

113Building malware classificators usable by State security agencies - Useche, Sepúlveda, Cabuya, Díaz

A wide understanding of the problem to be sol-
ved is also an important aspect that the members
of a data science project must consider, as it helps
in different phases of a data science life cycle like
the business understanding, the data filtering and
interpretation and the model evaluation and de-
ployment [16]. The problems, predictions or ques-
tions that data science can answer are:
•	 Is it A or B? (Classification or categorization)

•	 Is this strange? (Detection of anomalies) [17]

•	 How much or how many? (Prediction of values)

•	 How is it organized? (Description of items)

•	 What should I do? (Prescription) [18]

To develop data science projects, a set of avai-
lable data regarding the problem to solve must be
available. These data must fit at least the following
criteria, which allow to validate the applicability of
a data set to solve a problem:
•	 Volume: The available data must have a consi-

derable size, due generally as much as data is
included better result can be obtained.

•	 Relevant: Data should be relevant to the con-
text of the question to be solved.

•	 Precise: The available data must be correct,
so they can represent closely the reality of the
problem.

•	 Not connected: Available data should also be
not-linked but related, so the values of the fea-
tures have not dependable relations that gene-
rate mistakes in the data science model [19].

Machine learning is the way knowledge is extrac-
ted, ordered and classified from apparently uncon-
nected data, this knowledge is useful to do predic-
tions and take decisions, with this definition and the
definition of data science it is possible to say that
machine learning is a discipline of data science [20].

The machine learning models can be genera-
ted from data using Weka [21], which contains a
collection of machine learning algorithms for data
mining. As shown in Fig. 8, a classificatory algo-
rithm can be trained using an available data set
that has been classified previously. Once a model
is trained, unclassified data can be entered to the
model, so it can make a classification for each one
of them.

Fig. 8. DEVELOPMENT OF A CLASSIFICATORY MACHINE LEARNING
MODEL

Source: The authors

3.	 MACHINE LEARNING MODELS APPLIED TO
MALWARE ANALYSIS

Even if sandboxing is a powerful technique
to perform malware analysis, it requires that a
malware analyst performs a rigorous analysis of
the results to determine the nature of the sample:
goodware or malware.

In a sandbox, we can observe the behavior of
a malware that is trying to access, destroy, copy,
or alter information with a motivation that can be
economical or political. Those characteristics are
obtained by analyzing PE or EFL for desktop appli-
cations o APKs for mobile applications. The results
of the analyzes provided by a sandbox must be in-
terpreted by an expert to determine if it is a malwa-
re or not. This analysis generally consumes time
and the quality of the result depends on the exper-
tise of the malware analyst. So, this paper proposes
a mechanism that aims to resolve the data science
question of classifying unknown samples between
two possible options (Goodware or Malware) hel-
ping in this way to the malware analyst and redu-
cing the time that is required for an analysis.

The mechanisms proposed in this paper are
based on the development of machine learning
models that can classify windows desktop and
mobile android applications. An integration of
Cuckoo with machine learning is proposed, so the
results of Cuckoo are taken, and a machine lear-
ning model is trained with them, so it can be used
to make classification of unknown samples. Fig.
9 shows the process of training of machine lear-
ning models using samples with that APK (Android
Application Package) and EXE extensions (PE fi-
les). The process of training of machine learning

ITECKNE Vol. 15 Número 2 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • diciembre 2018 • 107 - 121114

models follow the steps: Collection of samples,
classification of samples using VirusTotal, analysis
of samples using Cuckoo sandbox or Androguard,
extraction of sample features from Cuckoo or An-
droguard, generation of a training data set and
training of a machine learning model. These steps
will be applied in sections 3.1 and 3.2.

Fig. 9. TRAINING OF MACHINE LEARNING MODELS FROM SAMPLES

Source: The authors.

3. 1	 Analyzing PE files

The development of a machine learning model
that allows classifying a sample between malware
and goodware, required to download 108 samples
from The Zoo2 and from various official download
pages, then such samples were classified using the
API (Application Programming Interface) of Virus
Total (as malware and goodware). In the next step,
each of the files was uploaded to Cuckoo sandbox
to perform a malware analysis. The results of the-
se analyzes contain the signatures with which the
sample matches. Cuckoo has a collection of signa-
tures, which are updated or created daily by contri-
butors around the world since Cuckoo sandbox is

2	 https://github.com/ytisf/theZoo.

an open source project. The signatures allow us to
identify patterns associated with previously known
malware behaviors, e.g. a try of access to kernel
commands or the holding of fake certificates. This
analysis allow us to obtain a context of the sam-
ple and facilitates the interpretation of the results.
Cuckoo sandbox has signatures that allow you to
identify a family or categories of malware (spyware,
worms, etc.) and identify modifications or installa-
tions that specific malware perform to gain control
of a target. Currently, signatures are also used by
some antivirus to detect malware [36].

Each report generated by Cuckoo was exported
and signatures were extracted from them, which
became the basis for the construction of the ma-
chine learning model.

Fig. 10 shows some of the signatures found in
a report indicating that the virtual machine firewa-
ll service was stopped, some URLS related to com-
mand and control servers were requested and pro-
cesses were injected, amongst others suspicious
findings that indicate that the sample presents
a malicious behavior. To automatize the genera-
tion of reports from Cuckoo sandboxing, a python
script (Parser.py) was created which extracts the
Cuckoo signatures from reports and parse them
to train the machine learning model.

A training data set was built from the obtained
Cuckoo signatures of each sample for a total of
58 signatures or features. Each row in the training
data set is a sample that has a set of signatures
(marked as ones), that indicate that the sample
matched that signature. On the other hand, the
last column refers to the sample classification
(Goodware or Malware) was obtained from the API
of Virus Total. A representation of the training data
set can be seen in table I. All the malware samples
evaluated were taken from The Zoo.

TABLE I

STRUCTURE OF THE TRAINING DATA SET FOR DESKTOP APPLICATIONS

Signature 1 Signature 2 … Signature 58 Class
Sample 1 1 0 … 1 GOO
Sample 2 0 0 … 1 MAL

... … … … … …
Sample 108 1 1 … 0 MAL

Source: The authors.

115Building malware classificators usable by State security agencies - Useche, Sepúlveda, Cabuya, Díaz

The developed machine learning model has
an accurateness of 88.8889% using the Random
SubSpace method [22] using a 20-fold cross-vali-
dation. This model obtained the results shown in
table II.

TABLE II

EVALUATION VALUES FOR RANDOM SUBSPACE MODEL

Kappa statistic 0.7295
Mean absolute error 0.2697
Root mean squared error 0.3338

Kappa statistic is a statistic measure that help
to evaluate how much two classifiers agree in the
classification of samples. When classifiers agree
all the times, Kappa value is 1.

On the other side, when the classifiers only
agree by chance, Kappa is 0 [23]. The Kappa sta-
tistic of the developed model is 0.7295, so it is
not as good as expect, but it is high enough to be
considered a substantial agreement without chan-
ce. The Mean absolute error (MAE) and the Root
mean squared error are measures to describe the
error in the average operation of the machine lear-
ning model [24].

The MAE indicate the deviation between the
classification got from the model versus the ac-
tual sample classification. In Fig. 11. an example
of prediction using this machine learning model is
shown, where a sample is classified as goodware
with an error of 0.728.

3. 2	 Analyzing Android mobile applications

Despite all advantages and functionalities
that Cuckoo provides in the analysis of malware
for desktop operating systems, it has many res-
trictions and problems in the analysis of malware
for mobile applications. Some of the problems
are the reduced compatibility with Android SDK
(Software Development Kit) and the restriction of
just to allow one hypervisor running at the same
time on the same machine, i.e. an android emu-
lator could not run over a virtualbox instance.

On the other hand, Android emulation re-
quire high computational requirements, not
to mention the incompatibility of processor ar-
chitectures due to most of mobile devices are
made with ARM architecture, while the sandbox
and Cuckoo were implemented on Intel architec-
ture. With these previously mentioned constra-
ints, an analysis over an Android emulator could
last up to three hours. To solve these problems,
Androguard was used, which is a tool written in
Python that have multiple functions to analyze
Android files. Androguard client is simple to use
and allows the automation of processes using
classes included by default. Androguard allows
to extract permissions requested by Android
applications and use them as features to com-
pose a training data set that can be used later in
the machine learning generation process.

Fig. 10. CUCKOO SIGNATURES

Source: The authors.

Fig. 11. PREDICTION FOR A DESKTOP MALWARE USING WEKA

Source: The authors.

ITECKNE Vol. 15 Número 2 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • diciembre 2018 • 107 - 121116

A machine learning model was developed with
123 APK (Android Application Package) samples,
which were classified as Goodware or Malware
according to the results obtained from VirusTotal
API. VirusTotal reports were used also to extract
the Android permits of each APK sample. A trai-
ning data set was built from the permits of each
sample, having one feature for each permit, for a
total of 256 signatures/features. Each sample is
an element of the training set having a set of sig-
natures/features that indicate if the sample mat-
ched with that permit.

Each permit has at least one application using
it. The structure of the training data set for the mo-
del can be seen in table III. T generate the model,
a python script was developed that takes VirusTo-
tal reports, extract the identified permits and ge-
nerates a training data set in a format (.arff) that
can be accepted by Weka.

The trained machine learning model has an
accurateness of 93.4959% using a neuronal ne-
twork “Multilayer Perceptron” and a cross-valida-
tion of 10 blocks. This model obtained the results
shown in table IV.

The Kappa coefficient of the model is 0.8105,
it means that two classifiers are in a substantial
agreement regarding if a sample is considered
as goodware or malware. Following the analysis
of these measures, the mean absolute error is
quite low, and the mean square error is higher,
meaning that the model has an acceptable ac-
curateness.

Once the model has been trained, this can
be used to make predictions about unknown
Android samples. Testing of the model can be
done using samples that are different from the
ones used to compose the training data set. The-
se samples can are analyzed by Androguard to
obtain the permits and then parsed to compose
a testing data set in a format that is accept by
Weka. Once the testing set is parsed, it can be
entered to the trained model in Weka and a pre-
diction for each sample is generated which can
support the analyst in the process of identifying
unknown sample as malware. An example of pre-
diction using Weka can be seen in Fig. 12, where
an unknown sample is classified as malware with
a 100% of probability.

3. 3	 Use case: IoT t3

This section presents a proposal of architec-
ture for malware detection in IoT ecosystems
using the machine learning model developed in
3.2. The model can be incorporated to a security
component called sentinel which automate the
classification of samples that are downloaded by
IoT devices, so it can be possible to protect a ne-
twork of IoT (Internet of Things) devices[37]. The
sentinel architecture has several security rings
that protect IoT devices with a defense in-depth
strategy [25]. If one sample pass as goodware by
the first ring, it will be evaluated by the second
ring and then by a third ring. Sentinel architectu-

TABLE III

STRUCTURE OF THE TRAINING DATA SET FOR ANDROID APPLICATIONS

Permit 1 Permit 2 … Permit 256 Class
Sample 1 1 0 … 1 MAL
Sample 2 0 0 … 1 MAL

… … … … … …
Sample n 1 1 ... 0 GOO

Source: The authors.

TABLE IV

EVALUATION VALUES FOR NEURAL NETWORK MODEL

Kappa statistic 0.8105
Mean absolute error 0.0679
Root mean squared error 0.2274

Source: The authors.

117Building malware classificators usable by State security agencies - Useche, Sepúlveda, Cabuya, Díaz

re can be seen in Fig. 13 with each ring having
the following functions:
1.	 IDS (Intrusion Detection System) [26]: This ring

detects intrusions in the network, whether by
ethernet or wifi. It also analyzes the network
searching for vulnerable IoT devices. All infor-
mation collected by this ring is sent to an event
correlation server.

2.	 Internal Analyzer Yara Rules [27]: These rules
allow to define features to look in samples, so
through static reversing engineering can be
possible to detect malware samples.

3.	 Machine Learning model: In this ring, the sample
is analyzed by the machine learning model deve-
loped in section 3.2. The machine learning mo-
del offered by this ring can be consulted through
an API REST. Through this API the sample permits
are gotten and passed to the trained model, so it
can classify the unknown sample.

4.	 External analyzer: If none of the previous rings
have detected the sample as malware, then it
is forwarded to an external analyzer (e.g. Virus-
Total) so it can be analyzed, and a classifica-
tion report can be obtained.

Fig. 13. IOT SENTINEL ARCHITECTURE

Source: The authors.

4.	 USING SANDBOXING AND MACHINE LEAR-
NING IN STATE SECURITY AGENCIES

The defense of malicious attacks is one of the
biggest challenges for organizations and cyberse-
curity teams nowadays. In this regard, Symantec
in its Internet Security Threat Report 2018 [28]
mentions that threats to digital security can come
from unexpected sources and that with each pas-
sing year will increase the volume and diversity of
threats, with attackers working hard to discover
new forms of attack and concealment. Likewi-
se, this report highlights the following key points
around existence of malware [29]:
•	 Coin mining was the largest area of growth in

cybercrime in 2017, with antivirus detections
of up to 8,500% compared to 2016.

•	 For 2017, ransomware infections increased
40% with respect to 2016, driven mainly by
WannaCry (Ransom.Wannacry).

•	 The number of ransomware variants for 2017
increased 46% with respect to 2016, even
though fewer new families emerge, indicating
an activity intensified by established groups,
i.e. existing families increments its number of
ransomware variants.

•	 Emotet (Trojan.Emotet) reappeared at the end
of 2017 as a major threat for banking sector
and Emotet detections increased by 2,000% in
the last quarter.

•	 E-mail filtering, intrusion prevention system
(IPS) and machine learning have supported
the early detection in the ransomware chain of
infection. In this regard, 2017 presented an in-
crease of 92% compared to 2016, in blocking
of scripts and macro downloaders, which are
one of the largest sources of ransomware and
banking threats.

•	 The general variants of malware have increa-
sed by 88%; mainly composed by a single type

Fig. 12. PREDICTION FOR AN ANDROID MALWARE USING WEKA

Source: The authors.

ITECKNE Vol. 15 Número 2 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • diciembre 2018 • 107 - 121118

of threat, the Trojan.Kotver! gm2, that repre-
sents 95% of the total data.

As mentioned by Yokoyama A. et al [30], the-
se growing trends in the amount and variety of
malware are consequence of polymorphism, i.e.
malware that uses a polymorphic engine to mu-
tate itself while keeping its original algorithm in-
tact [31]. This technique is commonly used by
computer viruses and worms to hide its presen-
ce. Malware growing trends are also impacted by
new threats discovered almost daily. In this sense,
cybersecurity teams use technologies and techni-
ques that facilitate malware analysis and help to
prevent attacks on critical assets, such as sand-
boxing [30].

Sandboxing is a technique that allows to enfor-
ce security policies for untrustworthy applications
in a secure environment to reduce risks for the
host system. It is appropriate to mitigate threats
that traditional security systems are unable to pre-
vent [32]. Due to new threats imply a more detai-
led and holistic analysis of its multiple features,
sandboxing can be enhanced by other techniques
such as machine learning, which seeks [33] to
resolve problems in an automated way using ex-
perience and empirical data. Two sandbox approa-
ches are traditionally managed: rule and isolation
based, each one has advantages and limitations.
In an isolation based approach an application A
executes an application B in a sandboxed environ-
ment, usually virtualized, where application B has
access to some specific and controlled sandbox
resources [34]with each process typically capable
of utilising all of the user’s privileges. Consequent-
ly such security mechanisms often fail to protect
against contemporary threats, such as previously
unknown (‘zero-day’. On the other hand, in a ruled
based approach each sandbox enforces a specific
policy regarding the resources that applications
within the sandbox can access. Application A can
launch application B implicitly in sandbox B which
enforce a policy for B [34]with each process typi-
cally capable of utilising all of the user’s privileges.
Consequently such security mechanisms often fail
to protect against contemporary threats, such as
previously unknown (‘zero-day’.

Among the most prominent variations of san-
dbox approaches is the one presented by Potter
and Nieh, mentioned by Schreuders ZC et al. [34]

with each process typically capable of utilising
all of the user’s privileges. Consequently such
security mechanisms often fail to protect against
contemporary threats, such as previously unk-
nown (‘zero-day’, who propose a container based
sandbox for application-oriented access control.
This proposal is known as Apiary and works in a
similar way to the security operating system Qu-
bes, which was developed by Rutkowska and Wo-
jtczuk, and aims to provides isolation through a
virtualization interface for security purposes [34]
with each process typically capable of utilising all
of the user’s privileges. Consequently such secu-
rity mechanisms often fail to protect against con-
temporary threats, such as previously unknown
(‘zero-day’. Another solution that applies sandbo-
xing principles is Cuckoo SandBox, which is an
open source software for automated analysis of
suspicious files that monitor the behavior of ma-
licious processes under an isolated environment.

Similarly, Schreuders ZC et al. [34]with each
process typically capable of utilising all of the
user’s privileges. Consequently such security
mechanisms often fail to protect against con-
temporary threats, such as previously unknown
(‘zero-day’ mention that some sandbox schemes
allow applications to read data from the host
computer with some restrictions like copy-on-wri-
te functions, which are resource management
techniques used in programming to implement
efficiently a “duplicate” or “copy” operation [35].
Copy-on-write functions allow to write any modi-
fication made by the application in a virtual disk
instead of the real hard disk. Solutions like Sand-
boxie3, and Shade Sandbox4 follow the approach
mentioned previously. Other sandbox solutions
run stand-alone applications through a Virtual
Machine Manager (VMM) or an interpreter, thus,
avoiding applications of making changes to the
host computer without user intervention. Java,
Silverlight and Flash Applets use the approach
here mentioned to insert mobile code content
into websites with a very limited access to stora-
ge and additional accesses granted through user
interaction [34]with each process typically capa-
ble of utilising all of the user’s privileges. Conse-
quently such security mechanisms often fail to

3	 https://www.sandboxie.com/
4	 https://www.shadesandbox.com/

119Building malware classificators usable by State security agencies - Useche, Sepúlveda, Cabuya, Díaz

protect against contemporary threats, such as
previously unknown (‘zero-day’.

Sandboxing integrated with machine learning
constitute a defense that fits with more of the-
se axioms because it is designed thinking in the
attacker capabilities to build sneaky software
that contains malicious functions. Additionally,
it allows to examine malicious malware before it
reaches critical assets, offering a detection and
delay of the attack. It also constitutes an addi-
tional security layer that allows to avoid that an
attack succeeds. This is due to sandboxing is de-
signed with the purpose that a malware does not
affect the area outside an isolated environment,
even if the malware defeats all the defenses
arranged in the sandbox. Through sandboxing
it can be possible to detect and delay attacks
by running suspicious samples in a test environ-
ment which can be empowered with machine
learning to offer an additional layer of defense
against unknown threats or mutations of some
already extended malware. This would allow se-
curity teams to have time to respond to attacks,
supplying the shortcomings of other security la-
yers like antivirus. Now, in relation to national
initiatives related to the use of sandboxing and
machine learning by cybersecurity teams and
state security agencies, the Government of
Colombia has been developing some projects
applied to its cybernetic defense processes, but
these are isolated and used alternately and not
combined. That is why, the developments pre-
sented in this paper are a novel proposal in this
regard which integrates sandboxing and machi-
ne learning, supporting in the way cybersecurity
teams such as the Cybernetic Joint Command
(CCOC). Specifically, machine learning models
proposed in Section 3.1 and 3.2, and architec-
ture described in Section 3.3, are evidence of
how machine learning and sandboxing can work
together to automates the classification process
of unknown samples.

Regarding the CCOC [36], who is responsible
for the nation cyberdefense, some research and
development (R&D) initiatives have been imple-
mented, with support of the Colombian School
of Engineering Julio Garavito, to include machi-
ne learning techniques in cybersecurity process.
One example is the project “Implementation of
a Security Information and Event Management

System for information asset protection” which
integrates machine learning models in event co-
rrelation engines, so it can be possible to predict
cybersecurity incidents related with critical cyber-
netic infrastructure. Another example is the pro-
ject “Open Source Intelligence applied to the Co-
lombian context” which develops some machine
learning models to make sentiment analysis of
information collected from social networks. The-
se two initiatives optimize labors of CCOC agents
working on SOC (Security Operation Center) and
intelligence groups. A governmental initiative re-
lated with sandboxing is the “Malware Analysis
Service” offered by the Colombian National Po-
lice [37] through the CSIRT division. This service
allows to perform file or URL analysis, identifying
suspicious features that are common in malwa-
re. It is implemented over Cuckoo Sandbox and
outputs a summarized malware analysis that
help Colombian citizens to determine if a file or
URL is malicious.

As described previously, cybersecurity teams
and governments must face the challenges of
new threats through techniques that allow the
software to be examined holistically and pro-
vide an advanced level of analysis, beyond the
techniques that traditionally have led the batt-
le against malware. That is why initiatives such
as those presented in this paper, which combi-
ne malware analysis techniques such as sand-
box with advanced analysis techniques such as
machine learning, are highly relevant and allow
a proactive reaction to cyberattacks. At last, it
must be remembered that sandbox solutions are
susceptible to anti sandbox techniques, e.g. use
of virtualization detection techniques, detection
of presence of real users (Turing test), detection
of hooking, exploitation of sandbox limitations
or use of advanced Anti-VM and Anti-Sandbox
tools. This poses a new challenge related to how
protection against sandbox evasion techniques
must be conducted, and in the same way it is a
warning for sandbox operators regarding threats
that in fact may already be executed silently with
such techniques [30]. Finally, there are many
advantages of using sandbox and machine lear-
ning, even if it also presents some challenges in
for its application by cybersecurity teams of state
security agencies. Specifically, for the Colombian
State, the identified challenges are:

ITECKNE Vol. 15 Número 2 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • diciembre 2018 • 107 - 121120

•	 Update of machine learning models to be
re-trained with recent malware samples.

•	 Counter techniques and tools for Anti-VM and
Anti-Sandbox.

•	 Implement the sharing of malware information
with national and international security agen-
cies that allow to strength the cyber-defense
processes.

•	 Deal with the existence of malware samples
that are found only in Colombia.

•	 Build more complete machine learning models
that include more malware features, in addi-
tion to signatures and permits.

5.	 CONCLUSIONS

Sandbox techniques are useful to make
malware analysis however they can be automated
and supported by machine learning models, so a
malware analyst can perform malware identifica-
tion tasks with more precision and in less time.
Additionally, regarding analysis of mobile malware
threats with sandbox, it is needed that the sand-
box solution has integration with mobile devices
operative systems. To develop machine learning
models, it is mandatory to validate the data quali-
ty in terms of the criterions mentioned in section
2.2 (Volume, Relevant, Precise, Not connected).
The two models developed in this paper use sig-
natures and permits as features of samples which
were considered as relevant in a malware detec-
tion problem. The precision of the data depends
on the ability to extract these features from the
samples using Cuckoo, Androguard or Virus To-
tal. As future work we will increase the number of
samples to increase the volume of data.

The machine learning models developed in
this paper can classify a sample as Goodware
and Malware, however with a bigger dataset it
could be possible to classify samples in more than
two classes. A more fine-grained classification of
samples could allow to identify different malware
categories and would be useful to determine spe-
cific countermeasures for each class. Finally, the
approaches and perspectives presented in sec-
tion 3 regarding the use of machine learning mo-
dels can support the development of new IoT se-
curity devices that offer a strong security schema

against new malware that has not been previously
classified by regular security mechanism.

ACKNOWLEDGMENT

This work has been supported partially by the
Colombian School of Engineering Julio Garavito
(Colombia) through the project “Cyber Security Ar-
chitecture for Incident Management”, funded by
the Internal Research Opening 2017.

REFERENCES

[1]	 Kaspersky, “Kaspersky Lab detects 360,000 new mali-
cious files daily – up 11.5% from 2016,” 2014. [Online].
Available: https://kaspersky.com/about/press-relea-
ses/2017_kaspersky-lab-detects-360000-new-mali-
cious-files-daily. [Accessed: 13-Aug-2018].

[2]	 M. Sikorski and A. Honig, Practical Malware Analysis :
a Hands-On Guide to Dissecting Malicious Software.
No Starch Press, 2012.

[3]	 J. M. Ehrenfeld, “WannaCry, Cybersecurity and Health
Information Technology: A Time to Act,” J. Med. Syst.,
vol. 41, no. 7, p. 104, Jul. 2017.

[4]	 M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R.
Sadeghi, and S. Tarkoma, “IoT SENTINEL: Automated
Device-Type Identification for Security Enforcement in
IoT,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), 2017, pp.
2177-2184.

[5]	 C. Wang, J. Ding, T. Guo, and B. Cui, “A Malware De-
tection Method Based on Sandbox, Binary Instrumen-
tation and Multidimensional Feature Extraction,” in
Advances on Broad-Band Wireless Computing, Com-
munication and Applications, 2018, pp. 427-438.

[6]	 I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Brin-
gas, “OPEM: A static-dynamic approach for machi-
ne-learning-based malware detection,” in Advances
in Intelligent Systems and Computing, 2013, vol. 189
AISC, pp. 271-280.

[7]	 P. Burnap, R. French, F. Turner, and K. Jones, “Malware
classification using self organising feature maps and
machine activity data,” Comput. Secur., vol. 73, pp.
399-410, Mar. 2018.

[8]	 S. E. Donaldson, S. G. Siegel, C. K. Williams, and A.
Aslam, “Defining the Cybersecurity Challenge,” in En-
terprise Cybersecurity Study Guide: How to Build a
Successful Cyberdefense Program Against Advanced
Threats, Berkeley, CA: Apress, 2018, pp. 3-51.

[9]	 O. Ferrand, “How to detect the Cuckoo Sandbox and
hardening it ? Keywords.”

121Building malware classificators usable by State security agencies - Useche, Sepúlveda, Cabuya, Díaz

[10]	 T. Teller and A. Hayon, “Enhancing Automated Malware
Analysis Machines with Memory Analysis.”

[11]	 R. Messier, Network Forensics. Wiley, 2017.

[12]	 D. Oktavianto and I. Muhardianto, Cuckoo malware
analysis: analyze malware using Cuckoo Sandbox.

[13]	 M. A. Waller and S. E. Fawcett, “Data Science, Pre-
dictive Analytics, and Big Data: A Revolution That Will
Transform Supply Chain Design and Management.”

[14]	 F. Provost and T. Fawcett, Data Science for Business:
What You Need to Know about Data Mining and Da-
ta-Analytic Thinking. O’Reilly Media, 2013.

[15]	 G. S. Nelson, The analytics lifecycle toolkit: a practical
guide for an effective analytics capability.

[16]	 D. (Computer scientist) Dietrich, R. Heller, B. Yang, and
EMC Education Services, Data science and big data
analytics: discovering, analyzing, visualizing and pre-
senting data.

[17]	 T. Dunning and B. E. Friedman, Practical machine lear-
ning: a new look at anomaly detection. O’Reilly Media,
2014.

[18]	 H. Chen, R. H. L. Chiang, and V. C. Storey, “Business In-
telligence and Analytics: From Big Data to Big Impact,”
MIS Quarterly, vol. 36. Management Information Sys-
tems Research Center, University of Minnesota, pp.
1165-1188, 2012.

[19]	 L. Sebastian-Coleman, Navigating the Labyrinth: An
Executive Guide to Data Management. Technics Publi-
cations, 2018.

[20]	 A. L’heureux, K. Grolinger, H. F. El Yamany, M. A. M.
Capretz, A. L’heureux, and K. Grolinger, “Machine Lear-
ning with Big Data: Challenges and Approaches 4 PU-
BLICATIONS 100 CITATIONS SEE PROFILE,” 2017.

[21]	 B. Kaluža, Instant Weka how-to: implement cutting-ed-
ge data mining aspects in Weka to your applications.
Packt Pub, 2013.

[22]	 D. Tao, S. Member, X. Tang, S. Member, X. Li, and X.
Wu, “Asymmetric Bagging and Random Subspace for
Support Vector Machines-Based Relevance Feedback
in Image Retrieval.”

[23]	 J. M. G. Anthony J. Viera, “Understanding interobserver
agreement: the kappa statistic,” 2005.

[24]	 C. Willmott and K. Matsuura, “Advantages of the mean
absolute error (MAE) over the root mean square error
(RMSE) in assessing average model performance,”
Clim. Res., vol. 30, no. 1, pp. 79-82, Dec. 2005.

[25]	 R. Lippmann et al., “Validating and Restoring Defen-
se in Depth Using Attack Graphs,” in MILCOM 2006,
2006, pp. 1-10.

[26]	 S. Snapp et al., “DIDS (Distributed Intrusion De-
tection System) - Motivation, Architecture, and An
Early Prototype,” http://www.academia.edu/down-
load/4378230/10.1.1.46.4991.pdf, 2017.

[27]	 M. Mansoori, I. Welch, and Q. Fu, “YALIH, yet another
low interaction honeyclient,” Proc. Twelfth Australas.
Inf. Secur. Conf. - Vol. 149, pp. 7-15, 2014.

[28]	 Symantec Corporation, “ISTR Internet Security Threat
Report.,” Mountain View, CA 94043, 2018.

[29]	 S. Corporation, “ISTR Internet Security Threat Report
Volume 23,” Mountain View, CA 94043, 2018.

[30]	 A. Yokoyama et al., “Sandprint: Fingerprinting malwa-
re sandboxes to provide intelligence for sandbox eva-
sion,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2016, vol. 9854
LNCS, pp. 165-187.

[31]	 D. Harley, R. Slade, and U. E. Gattiker, “Polymorphism,”
in Viruses Revealed: Understand and counter malicio-
sus software, United States: McGraw-Hill/Osborne,
2001, p. 10.

[32]	 M. Stephens, “Sandbox,” in Encyclopedia of Crypto-
graphy and Security, H. C. A. van Tilborg and S. Jajodia,
Eds. Boston, MA: Springer US, 2011, pp. 1075-1078.

[33]	 Gass S.I., Ed., “Machine Learning,” in Encyclopedia of
Operations Research and Management Science, Bos-
ton, MA: Springer US, 2013, pp. 909-909.

[34]	 Z. C. Schreuders, T. McGill, and C. Payne, “The state
of the art of application restrictions and sandboxes:
A survey of application-oriented access controls and
their shortfalls,” Comput. Secur, vol. 32, pp. 219-241,
Feb. 2013.

[35]	 D. P. (Daniel P. Bovet and M. Cesati, Understanding the
Linux kernel. United States of America: O’Reilly, 2002.

[36]	 CGFM, “Comando Conjunto Cibernético,” 2018. [On-
line]. Available: http://www.ccoc.mil.co/.[Accessed:
13-Aug-2018].

[37]	 PONAL, “CSIRT - Equipo de Respuesta a Incidentes
Informáticos.” [Online]. Available: https://cc-csirt.poli-
cia.gov.co/Sandbox. [Accessed: 13-Aug-2018].

